Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 25))

Abstract

We present our general framework for implicit A posteriori finite element procedures to compute upper and lower bounds for functional outputs of finite element solutions. The approach is based on a finite element domain decomposition technique and the construction of an augmented Lagrangian, in which the objective is a “quadratic” energy re-formulation of the desired output, and the constraints are the finite element equilibrium equations and inter-subdomain continuity requirements. Bounds for the output, on a suitably refined “truth” mesh, are then obtained by appealing to a dual min-max relaxation, evaluated for Lagrange multipliers computed on a coarse “working” mesh. For coercive problems, the computed bounds are uniformly valid regardless of the size of the underlying coarse discretization. An extension of the basic method to deal with non-coercive problems is also presented. In this case, the bounds computed can only be proven to be asymmptotic although in practice, they are also found to be valid for very coarse meshes. Adaptive mesh procedures can be incorporated naturally into the bounding framework to produce optimized meshes that meet a target bound gap. The methods presented are illustrated with several application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and T.J. Oden, A unified approach to a posteriori error estimation based on element residual methods, Numer. Math., 65:23–50, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Ainsworth and J.T. Oden, A posteriori Error Estimation in Finite ELement Analysis, Wiley-Interscience, 2000,

    Book  MATH  Google Scholar 

  3. I. Babuška and W.C. Rheinboltd, A posteriori error estimates for the finite element method, Int. J. Num. Meth. in Egngr., 12:1597–1615, 1978.

    Article  MATH  Google Scholar 

  4. R. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44:283–301, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Becker and R. Rannacher, Weighted a posteriori error control in finite element methods, IWR Preprint 96–1 (SFB359), Heildelberg, 1996.

    Google Scholar 

  6. D. Bertsekas, Nonlinear Programming, Athena Scientific, 1995.

    MATH  Google Scholar 

  7. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  8. C. Johnson, U. Nävert and J. Pitkäranta, Finite Element Methods for Linear Hyperbolic Problems, Comp. Meth. in Appl. Mech. and Engrg., 45 (1984), pp. 285–312.

    Article  MATH  Google Scholar 

  9. P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal., 20:485–509, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  10. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Course of Theoretical Physiscs, vol. 6, Pergamon Press 1982.

    Google Scholar 

  11. L. Machiels, Y. Maday and A.T. Patera, A“Flux-Free” nodal Neumann subproblem approach to output bounds for partial differential equations, to appear in C.. Acad.Sci. Paris, 1999.

    Google Scholar 

  12. L. Machiels, A.T. Patera, J. Peraire and Y. Maday, A general framework for finitie element A posteriori error control: application to linear and nonlinear convection-dominated problems, ICFD Conference on Numerical Methods for Fluid Dynamics, Oxford, 1998.

    Google Scholar 

  13. L. Machiels, J. Peraire and A.T. Patera, A posteriori finite element output bounds for the incompressible Navier-Stokes equations; Application to a natural convection problem, J. Comp. Phys., 172, 401–425, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Maday, A.T. Patera and J. Peraire, A general formulation for A posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem, C.. Acad.Sci. paris, t. 328, Serie I, p. 823–828, 1999.

    MathSciNet  MATH  Google Scholar 

  15. M. Paraschivoiu and A.T. Patera, A hierarchy duality approach to bounds for the outputs of partial differential equations, Comput. Methods Appl. Mech. Engrg., 15 Ladevèze and J.T. Oden editors. Elsevier, 1998.

    Google Scholar 

  16. M. Paraschivoiu, J. Peraire and A.T. Patera, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg., 150:289–312 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. A.T. Patera and E. Ronquist, A general output bound result: application to discretization and iteration error estimation and control, Mathematical Models and Methods in Applied Science, to appear.

    Google Scholar 

  18. J. Peraire and A.T. Patera, Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adpative refinement, in Advances in Adaptive Computational Methods in Mechanics, P. Ladevèze and J.T. Oden editors. Elsevier, 1998.

    Google Scholar 

  19. J. Peraire and A.T. Patera, Asymmptotic a posteriori finite element bounds for the outputs of non-coercive problems: the Helmholtz and Burgers equations, Comp. Meth. Appl. Mech. Engrg., 171, 77–86, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Prud’homme, D. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: reduced-basis output bond methods, Journal of Fluids Engineering, 2002 (to appear) .

    Google Scholar 

  21. J. Sarrate, J. Peraire and A.T. Patera, A posteriori bounds for non-linear outputs of solutions of the Helmholtz equation, Int. J. Num. Meth. Fluids, 31, 17–36, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Strang, Introduction to applied mathematics, Wellesley-Cambridge Press, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patera, A.T., Peraire, J. (2003). A General Lagrangian Formulation for the Computation of A Posteriori Finite Element Bounds. In: Barth, T.J., Deconinck, H. (eds) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05189-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05189-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07841-5

  • Online ISBN: 978-3-662-05189-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics