Adaptive Finite Element Methods for Incompressible Fluid Flow

  • Johan Hoffman
  • Claes Johnson
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 25)


We present recent work on the following issues of CFD: (i) discretization of the non-stationary incompressible Navier-Stokes equations, (ii) solution of the discrete system at each time step, (iii) hydrodynamic stability, (iv) adaptive error control and a posteriori error estimates, (v) transition to turbulence and (vi) turbulence modeling.


Streamwise Velocity Posteriori Error Couette Flow Poiseuille Flow Bluff Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Becker and R. Rannacher. (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, pp 1–102.Google Scholar
  2. 2.
    K. Eriksson, D. Estep, P. Hansbo and C. Johnson. (1995) Introduction to Adaptive Methods for Differential Equations. Acta Numerica, pp 105–158.Google Scholar
  3. 3.
    K. Eriksson, D. Estep, P. Hansbo and C. Johnson. (1996) Computational Differential Equations, Cambridge University Press.MATHGoogle Scholar
  4. 4.
    K. Eriksson, D. Estep and C. Johnson. (2001) Applied Mathematics: Body and Soul, Springer.Google Scholar
  5. 5.
    K. Eriksson, D. Estep, P. Hansbo, C. Johnson. Advanced Computational Differential Equations, to appear 2002.Google Scholar
  6. 6.
    T.B Gatski, M. Y. Hussaini and J.L. Lumley. (1996) Simulation and Modeling of Turbulent Flow, Oxford Univ. Press.Google Scholar
  7. 7.
    M. Giles, M. Larson, M. Levenstam and E. Süli. (1997) Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow, Technical Report NA-76/06, Oxford Univ. Computing Laboratory.Google Scholar
  8. 8.
    M. Germano, U. Poimelli, P. Moin and W. Cabot. (1991) A dynamic subgrid scale eddy-viscosity model. Phys. Fluids A 3, 1760.MATHCrossRefGoogle Scholar
  9. 9.
    J. Heywood, Remarks on the possible global regularity of solutions of the threedimensional Navier-Stokes equations. Preprint, Univ of British Columbia.Google Scholar
  10. 10.
    J. Hoffman, C. Johnson and S. Bertoluzza. (1999) Dynamic Subgrid Modeling I. Preprint 2000–04a, Chalmers Finite Element Center, to appear in Comp. Meth. Appl. Mech. Engrng.Google Scholar
  11. 11.
    J. Hoffman. (2000) Dynamic Subgrid Modeling II. Preprint 2000–04b, Chalmers Finite Element Center.Google Scholar
  12. 12.
    J. Hoffman. (2001) Dynamic Subgrid Modeling for Convection-Diffusion Equations with Fractal Coefficients. Multiscale and Multiresolution Methods, Springer Lecture Series in Engineering, Springer Verlag.Google Scholar
  13. 13.
    J. Hoffman. (2001) Dynamic Subgrid Modeling for Convection-Diffusion Reaction Systems with Fractal solutions. to appear in International Journal for Numerical Methods in Fluids.Google Scholar
  14. 14.
    J. Hoffman and C. Johnson. (2002) A computational study of transition to turbulence in shear flow. Preprint 2002–04, Chalmers Finite Element Center.Google Scholar
  15. 15.
    J. Hoffman. (2002) Adaptive finite element methods for turbulent flow. Preprint, Chalmers Finite Element Center.Google Scholar
  16. 16.
    D. Estep and C. Johnson. (1998) The pointwise computability of the Lorenz system. M3AS 8, pp 1277–1306.MathSciNetMATHGoogle Scholar
  17. 17.
    C. Johnson, Finite Element Methods for Flow Problems, in Unstructured Grid Methods for Advection Dominated Flows, AGARD Report 787, 1992.Google Scholar
  18. 18.
    C. Johnson, R. Rannacher and M. Boman (1995) On transition to turbulence and error control in CFD, Preprint 95–06, SFB 359, Univ. of Heidelberg.Google Scholar
  19. 19.
    C. Johnson and R. Rannacher. (1995) Numerics and hydrodynamic stability: Towards error control in CFD, SIAM J. Numer. Anal., 32, pp 1058–1079.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    C. Johnson and R. Rannacher. (1994) On error control in CFD, Proc. Int. Workshop “Numerical Methods for the Navier-Stokes equations”, Heidelberg Oct. 25–28, 1993, NNFM, Vol. 47, pp. 25–28, Vieweg, Braunschweig.Google Scholar
  21. 21.
    M.G. Larson. (2000) Error Growth and A Posteriori Error Estimates for Conservative Galerkin Approximations of Periodic Orbits in Hamiltonian Systems M3AS 10, pp 31–46.Google Scholar
  22. 22.
    J. Leray. (1934) Sur le Mouvement d’un Liquide Visqueux Emplissent l’Espace, Acta Math. J 63, pp 193–248.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    A. Logg. (2001) Multi-Adaptive Galerkin Methods for ODEs I and II. Submitted to SIAM J. Sci. Comput.Google Scholar
  24. 24.
    G. Papanicolau, K. Solna. (2001) Wavelet based estimation of local Kolmogorov turbulence. Long-range Dependence Theory and Applications. Birkhauser.Google Scholar
  25. 25.
    R. Rannacher. (1999) Finite element methods for the incompressible Navier Stokes equations, Preprint Intsitute of Applied Mathematics, Univ. of Heidelberg.Google Scholar
  26. 26.
    F. Sarghini, U. Piomelli, E. Balaras. (1999) Scale-similar models for large-eddy simulations. Phys. Fluids 11, 1596.MATHCrossRefGoogle Scholar
  27. 27.
    A. Scotti, C. Meneveau. Fractal dimension of velocity signal in high-Reynoldsnumber hydrodynamic turbulence. Phys. Review E 51, 5594, 1995.CrossRefGoogle Scholar
  28. 28.
    P. Schmid and D. Henningson. (2001) Stability and Transition in Shear Flows, Applied Mathematical Sciences 142, Springer.MATHCrossRefGoogle Scholar
  29. 29.
    G. Wagner and W.K. Liu. (1999) Turbulence simulation and multiple scale subgrid models, to appear in Computational Mechanics.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Johan Hoffman
    • 1
  • Claes Johnson
    • 1
  1. 1.Mathematics Department and Chalmers Finite Element CenterChalmers University of TechnologyGöteborgSweden

Personalised recommendations