Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 25))

Abstract

These lecture notes begin by observing that in many cases the most important engineering outputs of CFD calculations are one or two integral quantities, such as the lift and drag. It is then explained that the solution to an appropriate adjoint problem gives the effect of numerical approximations on the output functional of interest, facilitating the calculation of more accurate functional estimates. The theory is presented for both linear and nonlinear differential equations, incorporating a range of numerical examples illustrating the ability to obtain answers with twice the order of accuracy of the underlying numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.K. Anderson and D.L. Bonhaus. Airfoil design on unstructured grids for turbulent flows. AIAA Journal, 37(2):185–191, 1999.

    Article  Google Scholar 

  2. W.K. Anderson and V. Venkatakrishnan. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Computers & Fluids, 28(4–5):443–480, 1999.

    Article  MATH  Google Scholar 

  3. C.H. Bischof, A. Carle, P.D. Hovland, P. Khademi, and A. Mauer. ADI-FOR 2.0 User’s Guide (Revison D). Technical Report 192, Mathematics and Computer Science Division, Argonne National Laboratory, 1998.

    Google Scholar 

  4. J.W. Barrett and C.M. Elliott. Total flux estimates for a finite-element approximation of elliptic equations. IMA Journal of Numerical Analysis, 7:129–148, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Baysal and M. Eleshaky. Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics. AIAA Journal, 30(3):718–725, 1992.

    Article  MATH  Google Scholar 

  6. R. Becker, H. Kapp, and R. Rannacher. Adaptive finite element methods for optimal control of partial differential equations: basic concepts. SIAM Journal of Control and Optimization, 39:113–132, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Babuška and A. Miller. The post-processing approach in the finite element method — Part 1: calculation of displacements, stresses and other higher derivatives of the displacements. International Journal for Numerical Methods in Engineering, 20:1085–1109, 1984.

    Article  MATH  Google Scholar 

  8. I. Babuška and A. Miller. The post-processing approach in the finite element method — part 2: the calculation of stress intensity factors. International Journal for Numerical Methods in Engineering, 20:1111–1129, 1984.

    Article  MATH  Google Scholar 

  9. J.W. Barrett, G. Moore, and K.W. Morton. Optimal recovery in the finite element method, part 2: Defect correction for ordinary differential equations. IMA Journal of Numerical Analysis, 8:527–540, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Babuška and W.C. Rheinboldt. A posteriori error estimates tor the finite element method. International Journal for Numerical Methods in Engineering, 12:1597–1615, 1978.

    Article  MATH  Google Scholar 

  11. I. Babuška and W.C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM Journal of Numerical Analysis, 15(4):736 – 754, 1978.

    Article  MATH  Google Scholar 

  12. R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: basic analysis and examples. East- West Journal of Numerical Mathematics, 4:237–264, 1996.

    MathSciNet  MATH  Google Scholar 

  13. R. Becker and R. Rannacher. Weighted a posteriori error control in finite element methods. In et al H.G. Block, editor, Proceedings of ENUMATH-97, pages 621–637. World Scientific Publishing, 1998.

    Google Scholar 

  14. R. Braack and R. Rannacher. Adaptive finite element methods for low Mach number flows with chemical reactions. VKI Lecture Series 1999–03, 1999.

    Google Scholar 

  15. R. Becker and R. Rannacher. An optimal control approach to error control and mesh adaptation. In A. Iserles, editor, Acta Numerica 2001. Cambridge University Press, 2001.

    Google Scholar 

  16. A. Carle, M. Fagan, and L.L. Green. Preliminary results from the application of automated code generation to CFL3D. AIAA Paper 98–4807, 1998.

    Google Scholar 

  17. A. Dadone and B. Grossman. Progressive optimization of inverse fluid dynamic design problems. Computers & Fluids, 29(1), 2000.

    Google Scholar 

  18. J. Elliott. Aerodynamic optimization based on the Euler and NavierStokes equations using unstructured grids. PhD thesis, MIT Dept. of Aero. and Astro., 1998.

    Google Scholar 

  19. J. Elliott and J. Peraire. Practical 3D aerodynamic design and optimization using unstructured meshes. AIAA Journal, 35 (9):1479–1485, 1997.

    Article  MATH  Google Scholar 

  20. C. Faure and Y. Papegay. Odyssée User’s Guide version 1.7. Technical Report RT-0224, INRIA, Sophia-Antipolis, 1998.

    Google Scholar 

  21. M.B. Giles, M.C. Duta, and J.-D. Müller. Adjoint code developments using the exact discrete approach. AIAA Paper 2001–2596, 2001.

    Google Scholar 

  22. M.B. Giles. Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler equations. International Journal of Computational Fluid Dynamics, 5(2):247–258, 1996.

    Google Scholar 

  23. M.B. Giles. Aerospace design: a complex task. Lecture notes for VKI Lecture Course on Inverse Design. Technical Report NA97/07, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD., 1997.

    Google Scholar 

  24. M.B. Giles. Defect and adjoint error correction. Invited paper at the ICCFD conference, Kyoto, 2000.

    Google Scholar 

  25. M.B. Giles. On the iterative solution of adjoint equations. In G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors, Automatic Differentiation: From Simulation to Optimization. Springer, 2001.

    Google Scholar 

  26. R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Transactions on Mathematical Software, 24(4):437–474, 1998.

    Article  MATH  Google Scholar 

  27. M.B. Giles, M.G. Larson, M. Levenstam, and E. Süli. Adaptive error control for finite element approximations of the lift and drag in a viscous flow. Technical Report NA 97/06, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD., 1997.

    Google Scholar 

  28. M.B. Giles and N.A. Pierce. Adjoint equations in CFD: duality, boundary conditions and solution behaviour. AIAA Paper 97–1850, 1997.

    Google Scholar 

  29. M.B. Giles and N.A. Pierce. Superconvergent lift estimates using the adjoint Euler equations. In Proceedings of Third Asian CFD Conference, 1998.

    Google Scholar 

  30. M.B. Giles and N.A. Pierce. Improved lift and drag estimates using adjoint Euler equations. AIAA Paper 99–3293, 1999.

    Google Scholar 

  31. M.B. Giles and N.A. Pierce. An introduction to the adjoint approach to design. Flow, Turbulence and Control, 65(3/4):393–415, 2000.

    Article  MATH  Google Scholar 

  32. M.B. Giles and N.A. Pierce. Analytic adjoint solutions for the quasi-onedimensional Euler equations. Journal of Fluid Mechanics, 426:327–345, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Griewank. Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, 2000.

    MATH  Google Scholar 

  34. M.B. Giles and E. Süli. Adjoints methods for PDEs: a posteriori error analysis and postprocessing by duality. In A. Iserles, editor, Acta Numerica 2002. Cambridge University Press, 2002.

    Google Scholar 

  35. P. Houston, R. Rannacher, and E. Süli. A posteriori error analysis for stabilised finite element approximations of transport problems. Computer Methods in Applied Mechanics and Engineering, 190(11–12):1483–1508, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Jameson. Aerodynamic design via control theory. Journal of Scientific Computing, 3:233–260, 1988.

    Article  MATH  Google Scholar 

  37. A. Jameson. Optimum aerodynamic design using control theory. In M. Hafez and K. Oshima, editors, Computational Fluid Dynamics Review 1995, pages 495–528. John Wiley & Sons, 1995.

    Google Scholar 

  38. C. Johnson. On computability and error control in CFD. International Journal for Numerical Methods in Fluids, 20(8–9):777–788, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Jameson, N. Pierce, and L. Martinelli. Optimum aerodynamic design using the Navier-Stokes equations. Journal of Theoretical and Computational Fluid Mechanics, 10:213–237, 1998.

    Article  MATH  Google Scholar 

  40. C. Johnson, R. Rannacher, and M. Boman. Numerics and hydrodynamic stability — toward error control in computational fluid dynamics. SIAM Journal of Numerical Analysis, 32(4):1058–1079, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  41. V.M. Korivi, A.C. Taylor III, and G.W. Hou. Sensitivity analysis, approximate analysis and design optimization for internal and external viscous flows. AIAA Paper 91-3083, 1991.

    Google Scholar 

  42. B. Koren. Defect correction and multigrid for an efficient and accurate computation of airfoil flows. Journal of Computational Physics, 76, 1988.

    Google Scholar 

  43. J.-D. Müller and M.B. Giles. Solution adaptive mesh refinement using adjoint error analysis. AIAA Paper 2001–2550, 2001.

    Google Scholar 

  44. B. Mohammadi. Optimal shape design, reverse mode of automatic differentiation and turbulence. AIAA Paper 97–0099, 1997.

    Google Scholar 

  45. B. Mohammadi and O. Pironneau. Mesh adaption and automatic differentiation in a CAD-free framework for optimal shape design. International Journal for Numerical Methods in Fluids, 30(2):127–136, 1999.

    Article  MATH  Google Scholar 

  46. P. Monk and E. Süli. The adaptive computation of far field patterns by a posteriori error estimates of linear functionals. SIAM Journal of Numerical Analysis, 36(1):251–274, 1998.

    Article  MATH  Google Scholar 

  47. E. Nielsen and W.K. Anderson. Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations. AIAA Journal, 37(11):957–964, 1999.

    Article  Google Scholar 

  48. J.C. Newman, A.C. Taylor, R.W. Barnwell, P.A. Newman, and G. J.-W. Hou. Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations. Journal of Aircraft, 36(1):87–96, 1999.

    Article  Google Scholar 

  49. J.T. Oden and S. Prudhomme. New approaches to error estimation and adaptivity for the Stokes and Oseen equations. International Journal for Numerical Methods in Fluids, 31(1):3–15, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  50. J.T. Oden and S. Prudhomme. Goal-oriented error estimation and adaptivity for the finite element method. Computers and Mathematical Applications, 41(5–6):735–756, 2000.

    MathSciNet  Google Scholar 

  51. N.A. Pierce and M.B. Giles. Adjoint recovery of superconvergent functionals from approximate solutions of partial differential equations. Technical Report NA98/18, Oxford University Computing Laboratory, 1998.

    Google Scholar 

  52. N.A. Pierce and M.B. Giles. Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Review, 42(2):247–264, 2000.

    Article  MathSciNet  Google Scholar 

  53. J. Peraire and A.T. Patera. Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement. In P. Ladeveze and J.T. Oden, editors, New Advances in Adaptive Computational Methods in Mechanics. Elsevier, 1997.

    Google Scholar 

  54. P. Peraire and A. Patera. Asymptotic a posteriori finite element bounds for the outputs of noncoercive problems: the Helmholtz and Burgers equations. Computer Methods in Applied Mechanics and Engineering, 171(1–2):77–86, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Paraschivoiu, J. Peraire, and A. Patera. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 150(1–4):289–312, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  56. R. Rannacher. Adaptive Galerkin finite element methods for partial differential equations. Journal of Computational and Applied Mathematics, 1–2:205–233, 2000.

    MathSciNet  Google Scholar 

  57. G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice-Hall, 1973.

    MATH  Google Scholar 

  58. R.D. Skeel. A theoretical framework for proving accuracy results for deferred corrections. SIAM Journal of Numerical Analysis, 19:171–196, 1981.

    Article  MathSciNet  Google Scholar 

  59. H.J. Stetter. The defect correction principle and discretization methods. Numerische Mathematik, 29:425–443, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  60. E. Süli. A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In D. Kröner, M. Ohlberger, and C. Rohde, editors, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, volume 5 of Lecture Notes in Computational Science and Engineering, pages 123–194. SpringerVerlag, 1998.

    Google Scholar 

  61. S. Ta’asan, G. Kuruvila, and M.D. Salas. Aerodynamic design and optimization in one shot. AIAA Paper 92–0025, 1992.

    Google Scholar 

  62. D. Venditti and D. Darmofal. Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow. Journal of Computational Physics, 164:204–227, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Venditti and D. Darmofal. A grid adaptive methodology for functional outputs of compressible flow simulations. AIAA Paper 01–2659, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giles, M.B., Pierce, N.A. (2003). Adjoint Error Correction for Integral Outputs. In: Barth, T.J., Deconinck, H. (eds) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05189-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05189-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07841-5

  • Online ISBN: 978-3-662-05189-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics