Skip to main content

Abstract

The “pump-leak” model of Tosteson and Hoffman (1960) presented an elegant and simple paradigm for regulation of red blood cell (RBC) cation content and volume. It emphasised the importance of a specific, ouabain-sensitive, Na+/K+ pump, driven by ATP, as the primary active transport process for maintaining high intracellular K+, balancing K+ loss through passive processes. The passive pathways were not defined. For many years, they were thought of as non-specific “leaks” by which ions could travel down their electrochemical gradients across the cell membrane. A second route for mediated Na+ efflux persisted, however, in cells treated with ouabain, and thereby lacking functional Na+/K+ pump activity (Hoffman and Kregenow 1966). In these ouabain-treated cells, movement of K+ ions was not proportional to the electrochemical gradient for K+ unless Cl- was removed, implying coupled ion movements (Funder and Wieth 1967). The second Na+ “pump” was found to require an outward K+ gradient (Sachs 1971). It became apparent that Na+ and K+ fluxes were dependent on each other (Wiley and Cooper 1974), hence the notion of Na+-K+ cotransport. Subsequently, their Cl--dependence raised the possibility of Na+-K+-Cl- cotransport (Schmidt and McManus 1977; Dunham and Ellory 1980). Later a second passive pathway for K+ transport, requiring Cl- but not Na+, was observed (Dunham and Ellory 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adragna NC, Lauf PK (1998) Role of nitric oxide derivative, in K-Cl activation of low-potassium sheep red blood cells. J Membrane Biol 166:157–167

    Article  Google Scholar 

  • Berenbrink M, Weaver YR, Cossins AR (1997) Defining the volume dependence of multiple K flux pathways in trout red blood cells. Am J Physiol 272:C1099–C1111

    Google Scholar 

  • Berenbrink M, Volkel S, Heisler N, Nikinmaa M (2000) O2-dependent K+ fluxes in trout red blood cells: the nature of O2 sensing revealed by the O2 affinity, cooperativity and pH dependence of transport. J Physiol 526:69–80

    Article  Google Scholar 

  • Bernhardt I, Hall AC, Ellory JC (1991) Effects of low ionic strength media on passive human red cell monovalent cation transport. J Physiol 434:489–506

    Google Scholar 

  • Bize I, Dunham PB (1994) Staurosporine, a protein kinase inhibitor, activates K-Cl co-transport in LK sheep erythrocytes. Am J Physiol 266:C759–C770

    Google Scholar 

  • Bize I, Munoz P, Canessa M, Dunham PB (1998) Stimulation of Membrane serine-threonine phosphatase in erythrocytes by hydrogen peroxide and staurosporine. Am J Physiol 274:C440–C446

    Google Scholar 

  • Bize I, Guvenc B, Robb A, Buchbinder G, Brugnara C (1999) Serine/threonine protein phosphatases and regulation of K-Cl cotransport in human erythrocytes. Am J Physiol 277:C926–C936

    Google Scholar 

  • Bize I, Guvenc B, Buchbinder G, Brugnara C (2000) Stimulation of human erythrocyte K-Cl cotransport and protein phosphatase type 2A by N-ethylmaleimide: role of intracellular Mg2+. J Membrane Biol 177:159–168

    Article  Google Scholar 

  • Borgese F, Garcia-Romeu F, Motais R (1987) Control of cell volume and ion transport by beta-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri. J Physiol 382:123–144

    Google Scholar 

  • Bourne PK, Cossins AR (1982) On the instability of K+ influx in erythrocytes of the rainbow trout Salmo gairdneri, and the role of catecholamine hormones in mainitaining in vivo influx activity. J Exp Biol 101:93–104

    Google Scholar 

  • Bruce LJ, Tanner MJ (1999) Erythroid band 3 variants and disease. Ballieres Best Practical Research and Clinical Haematology 12:637–654

    Article  Google Scholar 

  • Brugnara C, Tosteson DC (1987a) Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol 252:C269–C276

    Google Scholar 

  • Brugnara C, Tosteson DC (1987b) Inhibition of K transport by divalent cations in sickle erythrocytes. Blood 70:1810–1815

    Google Scholar 

  • Brugnara C, Bunn HF, Tosteson DC (1986) Regulation of erythrocyte cation and water content in sickle cell anemia. Science 232:388–390

    Article  ADS  Google Scholar 

  • Brugnara C, Van Ha T, Tosteson DC (1989a) Acid pH induces formation of dense cells in sickle erythrocytes. Blood 74:487–495

    Google Scholar 

  • Brugnara C, Van Ha T, Tosteson DC (1989b) Role of chloride in potassium transport through the K-Cl cotransport system in human red blood cells. Am J Physiol 256:C944–C1003

    Google Scholar 

  • Cabantchik ZI, Greger R (1992) Chemical probes for anion transporters of mammalian cell Membranes. Am J Physiol 262:C803–C827

    Google Scholar 

  • Campbell EH, Gibson JS (1998) Oxygen-dependent K+ fluxes in sheep red cells. J Physiol 506:679–688

    Article  Google Scholar 

  • Campbell EH, Cossins AR, Gibson JS (1999) Oxygen dependent K+ influxes in Mg2+-clamped equine red cells. J Physiol 515:431–437

    Article  Google Scholar 

  • Canessa M, Fabry ME, Blumenfeld N, Nagel RL (1987a) Volume-stimulated, Cl-dependent K efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membrane Biol 97:97–105

    Article  Google Scholar 

  • Canessa M, Fabry ME, Nagel RL (1987b) Deoxygenation inhibits the volume-stimulated Cl-dependent K efflux in SS and young AA cells: a cytoplasmic Mg2+ modulation. Blood 70:1861–1866

    Google Scholar 

  • Cannon CL, Basavappa S, Strange K (1998) Intracellular ionic strength regulates the volume sensitivity of a swelling-activated anion channel. Am J Physiol 275:C416–C422

    Google Scholar 

  • Clayton GH, Owens GC, Wolff JS, Smith RL (1998) Ontogeny of cation-Cl- cotransporter expression in rat neocortex. Brain Res and Developm Brain Res 109:281–292

    Article  Google Scholar 

  • Colclasure GC, Parker JC (1991) Cytosolic protein concentration is the primary volume signal in dog red cells. J Gen Physiol 98:881–892

    Article  Google Scholar 

  • Colclasure GC, Parker JC (1992) Cytosolic protein concentration is the primary volume signal for swelling-induced [K-Cl] cotransport in dog red cells. J Gen Physiol 100:1–10

    Article  Google Scholar 

  • Cossins AR, Gibson JS (1997) Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. J Exp Biol 200:343–352

    Google Scholar 

  • Cossins AR, Weaver YR, Lykkeboe G, Nielsen OB (1994) Role of protein phosphorylation in control of K flux pathways of trout red blood cells. Am J Physiol 267:C1641–C1650

    Google Scholar 

  • De Franceschi L, Fumagalli L, Olivieri O, Corrocher R, Lowell CA, Berton G (1997) Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl co-transport. J Clin Invest 99:220–227

    Article  Google Scholar 

  • Delpire E (2000) Cation-chloride cotransporters in neuronal communication. News Physiol Sci 15:309–312

    Google Scholar 

  • Delpire E, Lauf PK (1991a) Magnesium and ATP dependence of K-Cl co-transport in low K+-sheep red blood cells. J Physiol 441:219–231

    Google Scholar 

  • Delpire E, Lauf PK (1991b) Trans effects of cellular K and Cl on ouabain-resistant Rb(K) influx in low K sheep red blood cells: Further evidence for asymmetry of K-Cl co-transport. Pflügers Arch 419:540–542

    Article  Google Scholar 

  • Drew C, Ball V, Gibson JS, Ellory JC (2002) H+ ion dependence of K+-Cl- cotransport in normal human red blood cells. J Physiol 539P:6P

    Google Scholar 

  • Dunham PB (1976) Anti-L serum. Two populations of antibodies affecting cation transport in LK erythrocytes of sheep and goats. Biochim Biophys Acta 443:219–226

    Article  Google Scholar 

  • Dunham PB (1995) Effects of urea on K-Cl cotransport in sheep red blood cells: evidence for two signals of swelling. Am J Physiol 268:0206–0032

    Google Scholar 

  • Dunham PB, Ellory JC (1980) Chloride activated potassium transport in human erythrocytes. Proc Natl Acad Sci USA 77:1711–1715

    Article  ADS  Google Scholar 

  • Dunham PB, Ellory JC (1981) Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride. J Physiol 318:511–530

    Google Scholar 

  • Dunham PB, Klimczak J, Logue PJ (1993) Swelling activation of K-Cl cotransport in LK sheep erythrocytes: a three-state process. J Gen Physiol 101:733–766

    Article  Google Scholar 

  • Ellory JC, Dunham PB (1980) Volume-dependent passive potassium transport in LK sheep red cells. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 409–427

    Google Scholar 

  • Ellory JC, Tucker EM (1969) Stimulation of the potassium transport system in low potassium type sheep red cells by a specific antibody reaction. Nature 222:477–478

    Article  ADS  Google Scholar 

  • Ellory JC, Hall AC, Stewart GW (1985) Volume-sensitive cation fluxes in mammalian red cells. Mol Physiol 8:235–246

    Google Scholar 

  • Ellory JC, Hall AC, Ody SA (1989a) Is acid a more potent activator of KCl co-transport than hypotonicity in human red cells? J Physiol 420:149P

    Google Scholar 

  • Ellory JC, Player M, Chalder SM, Stuart J (1989b) Rheological effect of activation of the KCl-cotransport pathway in normal and sickle erythrocytes. Clin Hemorheol 9:1009–1016

    Google Scholar 

  • Ellory JC, Hall AC, Ody SO, Englert HC, Mania D, Lang HJ (1990) Selective inhibitors of KCl cotransport in human red cells. FEBS Letters 262:215–218

    Article  Google Scholar 

  • Ellory JC, Hall AC, Ody SA, DeFigueiredos CE, Chalder S, Stuart J (1991) KCl cotransport in HbAA and HbSS red cells: activation by intracellular acidity and disappearance during maturation. In: Mangani M, DeFlora A (eds) Red blood cell ageing. Plenum Press, New York, pp 47–57

    Chapter  Google Scholar 

  • Ellory JC, Gibson JS, Stewart GW (1998) Pathophysiology of abnormal cell volume in human red cells. Contrib Nephrol 123:220–239

    Article  Google Scholar 

  • Evans JV (1954) Electrolyte concentrations in red blood cells of British breeds of sheep. Nature 174:931

    Article  ADS  Google Scholar 

  • Evans JV, King JWB (1955) Genetic control of sodium and potassium concentrations in the red blood cells of sheep. Nature 176:171

    Article  ADS  Google Scholar 

  • Flatman PW, Lew VL (1980) Magnesium buffering in intact human red blood cells measured using the ionophore A23187. J Physiol 305:13–30

    Google Scholar 

  • Flatman PW, Adragna NC, Lauf PK (1996) Role of protein kinases in regulating sheep erythrocyte K-Cl cotransport. Am J Physiol 271:C255–C263

    Google Scholar 

  • Fujise H, Abe K, Kamimura M, Ochiai H (1997) K+-Cl- cotransport and volume regulation in the light and the dense fraction of high K+ dog red blood cells. Am J Physiol 273:R2991–R2998

    Google Scholar 

  • Funder J, Wieth JO (1967) Effect of ouabain on glucose metabolism and on fluxes of sodium and potassium of human blood cells. Acta Physiol Scand 71:113–124

    Article  Google Scholar 

  • Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger MA, Brenner BM, Hebert SC (1993) Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci USA 90:2749–2753

    Article  ADS  Google Scholar 

  • Garay RP, Nazaret C, Hannaert PA, Cragoe EJ (1989) Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroinde-nyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumet-anide-sensitive [Na+,K+,Cl-]-cotransport system. Mol Pharmacol 33:696–701

    Google Scholar 

  • Gibson JS, Hall AC (1995) Stimulation of KCl co-transport in equine erythrocytes by hydrostatic pressure: effect of kinase/phosphatase inhibition. Pflügers Arch 429:446–448

    Article  Google Scholar 

  • Gibson JS, Ellory JC, Culliford SJ, Fincham DA (1993) Volume-sensitive KCl co-transport and taurine fluxes in horse red blood cells. Exp Physiol 78:685–695

    Google Scholar 

  • Gibson JS, Godart H, Ellory JC, Staines H, Honess NA, Cossins AR (1995) Modulation of K+-Cl- cotransport in equine red blood cells. Exp Physiol 79:997–1009

    Google Scholar 

  • Gibson JS, Speake PF, Ellory JC (1998) Differential oxygen sensitivity of the K+-Cl- co-transporter in normal and sickle human red blood cells. J Physiol 511:225–234

    Article  Google Scholar 

  • Gibson JS, Cossins AR, Ellory JC (2000) Oxygen-sensitive membrane transporters in vertebrate red cells. J Exp Biol 203:1395–1407

    Google Scholar 

  • Gillen CM, Brill S, Payne JA, Forbusch IB (1996) Molecular cloning and functional expression of the KCl cotransporter from rabbit, rat and human. J Biol Chem 217:16237–16244

    Google Scholar 

  • Godart H, Ellory JC (1996) KCl cotransport activation in human erythrocytes by high hydrostatic pressure. J Physiol 491:423–434

    Google Scholar 

  • Godart H, Dormandy A, Ellory JC (1997) Do HbSS erythrocytes lose KCl in physiological conditions? Brit J Haematol 98:25–31

    Article  Google Scholar 

  • Godart H, Ellory JC, Motais R (1999) Regulatory volume response of erythrocytes exposed to a gradual and slow decrease in osmolality. Pflügers Arch 437:776–779

    Article  Google Scholar 

  • Guizouarn H, Motais R (1999) Swelling activation of transport pathways in erythrocytes: effects of Cl-, ionic strength and volume changes. Am J Physiol 276:C210–C220

    Google Scholar 

  • Guizouarn H, Harvey BJ, Borgese F, Gabillat N, Garcia-Romeu F, Motais R (1993) Volume-activated Cl--independent and Cl--dependent K+ pathways in trout red blood cells. J Physiol 462:609–626

    Google Scholar 

  • Hall AC, Ellory JC (1986a) Effect of high hydrostatic pressure on ‘passive’ monovalent cation transport in human red cells. J Membrane Biol 94:1–17

    Article  Google Scholar 

  • Hall AC, Ellory JC (1986b) Evidence for the presence of volume-sensitive KCl transport in ‘young’ human red cells. Biochim Biophys Acta 858:317–320

    Article  Google Scholar 

  • Hall AC, Ellory JC, Klein RA (1982) Pressure and temperature effects on human red cell cation transport. J Membrane Biol 68:47–56

    Article  Google Scholar 

  • Hiki K, D’Andrea RJ, Furez J, Crawford J, Woollatt E, Sutherland GR, Vadas MA, Gamble JR (1999) Cloning, characterization and chromosomal location of a novel human K+-Cl- cotransporter. J Biol Chem 274:10661–10667

    Article  Google Scholar 

  • Hladky SB, Rink TJ (1977) pH equilibrium across the red cell membrane. In: Ellory JC, Lew VL (eds) Membrane transport in red cells. Academic Press, London, pp 115–135

    Google Scholar 

  • Hoffman JF (1997) ATP compartmentalization in human erythrocytes. Curr Opin Hematol 4:112–115

    Article  Google Scholar 

  • Hoffmann EK, Dunham PB (1995) Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol 161:173–262

    Article  Google Scholar 

  • Hoffman JF, Kregenow FM (1966) The characterization of new energy dependent cation transport processes in red blood cells. Ann New York Acad Sci 137:566–576

    Article  ADS  Google Scholar 

  • Holtzman EJ, Kumar S, Faaland CA, Warner F, Logue PJ, Erickson SJ, Ricken G, Wald-man J, Kumar S, Dunham PB (1998) Cloning, characterization, and gene organization of K-Cl cotransporter from pig and human kidney and C. elegans. Am J Physiol 275:F550–F564

    Google Scholar 

  • Honess NA, Gibson JS, Cossins AR (1996) The effects of oxygenation upon the Cl-dependent K flux pathway in equine red cells. Pfliigers Arch 432:270–277

    Article  Google Scholar 

  • Inaba M, Yawata A, Koshino I, Sato K, Takeuchi M, Takakuwa Y, Yawata Y, Kanzaki A, Sakai J, Ban A, Ono K, Maede Y (1996) Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J Clin Invest 97:1804–1817

    Article  Google Scholar 

  • Jennings ML (1999) Volume-sensitive K+/Cl- cotransport in rabbit erythrocytes. Analysis of the rate-limiting activation and inactivation events. J Gen Physiol 114:743–757

    Article  Google Scholar 

  • Jennings ML, Adame MF (2001) Direct estimate of 1:1 stoichiometry of K(+)-Cl(-) co-transport in rabbit erythrocytes. Am J Physiol 281:C825–C832

    Google Scholar 

  • Jennings ML, Al-Rohil N (1990) Kinetics of activation and inactivation of swelling-stimulated K+/Cl transport: The volume-sensitive parameter is the rate constant for inactivation. J Gen Physiol 95:1021–1040

    Article  Google Scholar 

  • Jennings ML, Schulz RK (1991) Okadaic acid inhibition of KCL cotransport: evidence that protein dephosphorylation is necessary for activation of transport by either swelling or N-ethylmaleimide. J Gen Physiol 97:799–817

    Article  Google Scholar 

  • Kaji DM (1989) Kinetics of volume-sensitive K transport in human erythrocytes: evidence for asymmetry. Am J Physiol 256:C1214–C1223

    Google Scholar 

  • Kaji DM (1993) Effect of membrane potential on K-Cl transport in human erythrocytes. Am J Physiol 264:C376–C382

    Google Scholar 

  • Kaji DM, Gasson C (1995) Urea activation of K-Cl cotransport in human erythrocytes. Am J Physiol 268:C1018–C1025

    Google Scholar 

  • Kaji DM, Tsukitani Y (1991) Role of protein phosphorylation in activation of KCl cotransport in human erythrocytes. Am J Physiol 260:C178–C182

    Google Scholar 

  • Kerr SE (1937) Studies on the inorganic composition of blood. J Biol Chem 117:227–235

    Google Scholar 

  • Khan A, Ellory JC (2000) Elevated temperatures enhance KCC1 activity in sickle cells. Bioelectrochemistry 52:127–131

    Article  Google Scholar 

  • Khan A, Gibson JS, Ellory JC (2000) Oxygen-dependent KCl cotransport in ghosts from normal human red blood cells. J Physiol 527P:38P

    Google Scholar 

  • Kiessling K, Roberts N, Gibson JS, Ellory JC (2000) A comparison in normal individuals and sickle cell patients of reduced glutathione precursors and their transport between plasma and red cells. Hematol J 1:243–249

    Article  Google Scholar 

  • Kirk K, Strange K (1998) Functional properties and physiological roles of organic solute channels. Annu Rev Physiol 60:719–739

    Article  Google Scholar 

  • Kirk K, Ellory JC, Young JD (1992) Transport of organic substrates via a volume-activated channel. J Biol Chem 267:23475–23478

    Google Scholar 

  • Kregenow FM (1971) The reponse of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol 58:372–395

    Article  Google Scholar 

  • Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    Google Scholar 

  • Lauf PK (1983) Thiol-dependent passive K/Cl transport in sheep red cells. I. Dependence on chloride and external K+ (Rb+) ions. J Membrane Biol 73:237–246

    Article  Google Scholar 

  • Lauf PK (1985) KCl cotransport: sulfhydryls, divalent cations and the mechanism of volume activation in a red cell. J Membrane Biol 88:1–13

    Article  Google Scholar 

  • Lauf PK (1991) Foreign anions modulate volume set point of sheep erythrocyte K-Cl co-transport. Am J Physiol 260:C502–C512

    Google Scholar 

  • Lauf PK, Bauer J (1987) Direct evidence for chloride-dependent volume reduction in macrocytic sheep reticulocyte. Biochem Biophys Res Commun 144:849–855

    Article  Google Scholar 

  • Lauf PK, Theg BE (1980) A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem Biophys Res Commun 92:1422–1428

    Article  Google Scholar 

  • Lauf PK, Mangor-Jensen A (1984) Effects of A23187 and Ca2+ on volume- and thiol-stimulated ouabain-resistant K+Cl- fluxes in low K+ sheep erythrocytes. Biochem Biophys Res Commun 125:790–796

    Article  Google Scholar 

  • Lauf PK, Stiehl BJ, Joiner CH (1977) Active and passive cation transport and L-antigen heterogeneity in low potassium sheep red cells. J Gen Physiol 70:221–242

    Article  Google Scholar 

  • Lauf PK, Bauer J, Adragna NC, Fujise H, Martin A, Zade-Oppen M, Ryu KH, Delpire E (1992) Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol 263:C917–C932

    Google Scholar 

  • Lauf PK, Erdmann A, Adragna NC (1994) K-Cl cotransport, pH and role of Mg in volume-clamped low-K sheep erythrocytes: three equilibrium states. Am J Physiol 266:C95–C103

    Google Scholar 

  • Lauf PK, Adragna NC, Agar NS (1995) Glutathione removal reveals kinases as common targets for K-Cl cotransport stimulation in sheep erythrocytes. Am J Physiol 269:C234–C241

    Google Scholar 

  • Lauf PK, Zhang J, Delpire E, Fyffe RE, Mount DB, Adragna NC (2001) K-Cl co-transport: immunocytochemical and functional evidence for more than one KCC isoform in high K and low K sheep erythrocytes. Comp Biochem Physiol A 130:499–509

    Article  Google Scholar 

  • Lew VL, Freeman CJ, Ortiz OE, Bookchin RM (1991) A mathematical model of the volume, pH and ion content regulation in reticulocytes. J Clin Invest 87:100–112

    Article  Google Scholar 

  • Low PS (1986) Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta 864:145–167

    Article  Google Scholar 

  • Lytle C (1997) Activation of the avian erythrocyte Na-K-Cl cotransport protein by cell shrinkage, cAMP, fluoride, and calyculin-A involves phosphorylation at common sites. J Biol Chem 272:15069–15077

    Article  Google Scholar 

  • Matthews JB, Smith JA, Mun EC, Sicklick JK (1998) Osmotic regulation of intestinal epithelial Na+-K+-Cl cotransport: role of CI and F-actin. Am J Physiol 274:C697–C706

    Google Scholar 

  • Miles R (1999) A homeostatic switch. Nature 397:215–216

    Article  ADS  Google Scholar 

  • Minton AP (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem 55:119–140

    Article  Google Scholar 

  • Minton AP (1994) Influence of macromolecular crowding on intracellular association reactions: possible role in volume regulation. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 181–190

    Google Scholar 

  • Minton AP, Colclasure GC, Parker JC (1992) Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci USA 89:10504–10506

    Article  ADS  Google Scholar 

  • Mitsui T, Kitazawa T, Ikebe M (1994) Correlation between high temperature dependence of smooth muscle myosin light chain phosphatase activity and muscle relaxation rate. J Biol Chem 269:5842–5848

    Google Scholar 

  • Motais R, Guizouarn H, Garcia-Romeu F (1991) Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems. Biochim Biophys Acta 1075:169–180

    Article  Google Scholar 

  • Mount DB, Delpire E, Gamba G, Hall AE, Poch E, Hoover RSJ, Hebert SC (1998) The electroneutral cation-chloride cotransporters. J Exp Biol 201:2091–2102

    Google Scholar 

  • Mount DB, Mercado A, Song L, Xu J, George AL, Delpire E, Gamba G (1999) Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride co-transporter gene family. J Biol Chem 274:16355–16362

    Article  Google Scholar 

  • Muimo R, Hornickova Z, Riemen CE, Gerke V, Matthews H, Mehta A (2000) Histidine phosphorylation of annexin I in airway epithelia. J Biol Chem 275:36632–36636

    Article  Google Scholar 

  • Muzyamba MC, Speake PF, Gibson JS (2000) Oxidants and regulation of KCl cotransport in equine red blood cells. Am J Physiol 279:C981–C989

    Google Scholar 

  • Muzyamba MC, Campbell EH, Rahman T, Gibson JS (2001) Intracellular Mg2+ and K+-Cl- cotransport in human red blood cells. J Physiol 535P:20P

    Google Scholar 

  • Nielsen OB, Lykkeboe G, Cossins AR (1992) Oxygenation-activated K+ fluxes in trout red blood cells. Am J Physiol 263:C1057–C1064

    Google Scholar 

  • Olivieri O, Bonollo M, Friso S, Girelli D, Corrocher R, Vettore L (1993) Activation of K+/Cl- cotransport in human erythrocytes exposed to oxidative agents. Biochim Biophys Acta 1176:37–42

    Article  Google Scholar 

  • O’Neill WC (1991) Swelling-activated K-Cl cotransport: metabolic dependence and inhibition by vanadate and fluoride. Am J Physiol 260:C308–C315

    Google Scholar 

  • Orlov SN, Pokudin NI, Kotelevtsev YV, Gulak PV (1989) Volume-dependent regulation of ion transport and membrane phosphorylation in human and rat erythrocytes. J Membrane Biol 107:105–117

    Article  Google Scholar 

  • Ortiz-Carranza O, Adragna NC, Carnes L, Lauf PK (1997) Two operational models of K-Cl cotransport in low K+ sheep red blood cells. Cell Physiol Biochem 7:251–263

    Article  Google Scholar 

  • Parker JC (1993) Urea alters set point volume for K-Cl cotransport, Na-H exchange and Ca-Na exchange in dog red blood cells. Am J Physiol 265:C447–C452

    Google Scholar 

  • Parker JC (1994) Coordinated regulation of volume-activated transport pathways. In: Strange K (ed) Cellular and molecular physiology of volume regulation. CRC Press, Boca Raton, pp 311–321

    Google Scholar 

  • Parker JC, McManus TJ, Starke LC, Gitelman HJ (1990) Coordinated regulation of Na/H exchange and K-Cl cotransport in dog red cells. J Gen Physiol 96:1141–1152

    Article  Google Scholar 

  • Parker JC, Dunham PB, Minton AP (1995) Effects of ionic strength on the regulation of Na/H exchange and K-Cl cotransport in dog red blood cells. J Gen Physiol 105:677–699

    Article  Google Scholar 

  • Payne JA (1997) Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:0516–0525

    Google Scholar 

  • Payne JA, Lytle C, McManus TJ (1990) Foreign anion substitution for chloride in human red blood cells: effect on ionic and osmotic equilibria. Am J Physiol 259:C819–C827

    Google Scholar 

  • Payne JA, Stevenson TJ, Donaldson LF (1996) Molecular characterization of a putative K-Cl cotransporter in rat brain. J Biol Chem 271:16245–16252

    Article  Google Scholar 

  • Pellegrino CM, Rybicki AC, Musto S, Nagel RL, Schwartz RS (1998) Molecular identification of erythroid K:C1 cotransporter in human and mouse erythroleukemic cells. Blood Cells, Molecules, and Diseases 24:31–40

    Article  Google Scholar 

  • Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ (1999) Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol 277:0210–0219

    Google Scholar 

  • Rasmusen BA, Hall JG (1966) Association between potassium concentration and serological type of sheep red blood cells. Science 151:1551–1552

    Article  ADS  Google Scholar 

  • Sachs JR (1971) Ouabain-insensitive sodium movements in the human red blood cell. J Gen Physiol 57:259–282

    Article  ADS  Google Scholar 

  • Sachs JR, Martin DW (1993) The role of ATP in swelling-stimulated K-C; cotransport in human red cell ghosts. J Gen Physiol 102:551–573

    Article  Google Scholar 

  • Sachs JR, Martin DW (1999) Role of polyamine structure in inhibition of K+-Cl- cotransport in human red cell ghosts. J Physiol 520:723–735

    Article  Google Scholar 

  • Schmidt WFR, McManus TJ (1977) Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response. J Gen Physiol 70:99–121

    Article  Google Scholar 

  • Shen MR, Chou CY, Hsu KF, Liu HS, Dunham PB, Holtzman EJ, Ellory JC (2001) The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc Natl Acad Sci USA 98:14714–14719

    Article  ADS  Google Scholar 

  • Shenolikar S, Weinman EJ (2001) NHERF: targeting and trafficking membrane proteins. Am J Physiol 280:F389–F395

    Google Scholar 

  • Smalley CE, Tucker EM, Dunham PB, Ellory JC (1982) Interaction of L antibody with low potassium-type sheep red cells: resolution of two separate functional antibodies. J Membrane Biol 64:167–174

    Article  Google Scholar 

  • Southgate CD, Chishti AH, Mitchell B, Yi SJ, Palek J (1996) Targeted disruption of the murine erythroid band 3 results in spherocytosis and severe haemolytic anaemia dep-site a normal membrane skeleton. Nature Genetics 14:227–230

    Article  Google Scholar 

  • Speake PF, Gibson JS (1997) Urea-stimulated K-Cl cotransport in equine red blood cells. Pflügers Arch 434:104–112

    Article  Google Scholar 

  • Speake PF, Roberts CA, Gibson JS (1997) Effect of changes in respiratory blood parameters on equine red blood cell K-Cl cotransporter. Am J Physiol 273:C1811–C1818

    Google Scholar 

  • Starke LC, Jennings ML (1993) K-Cl cotransport in rabbit red cells: further evidence for regulation by protein phosphatase type 1. Am J Physiol 264:C118–C124

    Google Scholar 

  • Stewart GW, Turner EJ (1999) The hereditary stomatocytoses and allied disorders: congenital disorders of erythrocyte membrane permeability to Na and K. Ballieres Best Practical Res Clin Haematol 12:707–727

    Article  Google Scholar 

  • Stuart J, Ellory JC (1988) Rheological consequences of erythrocyte dehydration. Br J Haematol 69:1–4

    Article  Google Scholar 

  • Takakuwa Y (2001) Regulation of red cell membrane protein interactions: implications for red cell function. Curr Opin Hematol 8:80–84

    Article  Google Scholar 

  • Teti K, Venza I, Crupi M, Busa M, Loddo S, Romano L (2002) Anion transport in normal erythrocytes, sickle red cells, and ghosts in relation to haemoglobins and magnesium. Arch Biochem Biophys 403:149–154

    Article  Google Scholar 

  • Tosteson DC, Hoffman JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 44:169–194

    Article  Google Scholar 

  • Tosteson MT, Halperin JA, Kishi Y, Tosteson DC (1991) Paly toxin induces an increase in the cation conductance of red cells. J Gen Physiol 98:969–985

    Article  Google Scholar 

  • Tse WT, Lux SE (1999) Red blood cell membrane disorders. Blood 104:2–13

    Google Scholar 

  • Vardi N, Zhang LL, Payne JA, Sterling P (2000) Evidence that different cation chloride co-transporters in retinal neurons allow opposite responses to GABA. J Neurosci 20:7657–7663

    Google Scholar 

  • Vitoux D, Olivieri O, Garay RP, Cragoe EJ, Galacteros F, Beuzard Y (1989) Inhibition of K+ efflux and dehydration of sickle cells by [(dihydroindenyl)oxy]alkanoic acid: an inhibitor of the K+Cl- cotransport system. Proc Natl Acad Sci USA 86:4273–4276

    Article  ADS  Google Scholar 

  • Vitoux D, Beuzard Y, Brugnara C (1999) The effect of hemoglobin A and S on the volume-and pH-dependence of K-Cl cotransport in human erythrocyte ghosts. J Membrane Biol 167:233–240

    Article  Google Scholar 

  • Voets T, Droogmans G, Raskin G, Eggermont J, Nilius B (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc Natl Acad Sci USA 96:5298–5303

    Article  ADS  Google Scholar 

  • Wiley JS, Cooper RA (1974) A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. J Clin Invest 53:745–75

    Article  Google Scholar 

  • Wilkins RJ, Browning JA, Ellory JC (1999) Cell volume regulation reduced to size. In: Kozlowski R (ed) Chloride channels. Isis Medical Publishing, Oxford, pp 19–23

    Google Scholar 

  • Willis JS, Anderson GL (1998) Activation of K-Cl cotransport by mild warming in guinea pig red cells. J Membrane Biol 163:193–203

    Article  Google Scholar 

  • Xu JC, Lytle C, Zhu TT, Payne JA, Benz EJ, Forbush BI (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci USA 91:2201–2205

    Article  ADS  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 81–109

    Google Scholar 

  • Zade-Oppen AM, Lauf PK (1990) Thiol-dependent passive K:C1 cotransport in sheep red blood cells: IX. Modulation by pH in the presence and absence of DIDS and the effect of NEM. J Membrane Biol 118:143–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gibson, J.S., Ellory, J.C. (2003). K+-Cl- Cotransport in Vertebrate Red Cells. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics