Skip to main content

Active and Passive Monovalent Ion Transport Association with Membrane Antigens in Sheep Red Cells: a Molecular Riddle

  • Chapter
Red Cell Membrane Transport in Health and Disease

Abstract

The occurrence in the animal kingdom of species (ruminants, canines) with red blood cells (RBCs) containing different concentrations of K+ and Na+ has fascinated a number of laboratories over the past century. One of the great discoveries in biology and physiology is the fact that active and passive cation transport necessary for the maintenance of the different cation steady states in ruminant RBCs is associated with membrane surface antigens through which the respective antibodies, by classic antigen/antibody reactions, modify transport. In particular, the sheep RBC system has served as a useful model to seek similar associations in other species, and in human pathophysiology, as reviewed earlier (Lauf 1975, 1978; Ellory and Tucker 1983; Dunham 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abderhalden E (1889) Über den Blut Kalium Gehalt verschiedener Säugethiere. Hoppe-Seyler’s Z Physiologische Chemie 25:65–115

    Article  Google Scholar 

  • Adragna NC, Lauf PK (1994) Quinine and quinidine inhibit and reveal heterogenity of K-Cl cotransport in low K sheep erythrocytes. J Membrane Biol 142:95–207

    Article  Google Scholar 

  • Adragna NC, Lauf PK (1997) Oxidative activation of K-Cl cotransport by diamide in erythrocytes from humans with red cell disorders, and from several mammalian species. J Membrane Biol 155:207–221

    Article  Google Scholar 

  • Adragna NC, Lauf PK (1998) Role of nitrite, a nitric oxide derivative, in K-Cl cotransport activation of low potassium sheep red blood cells. J Membrane Biol 166:157–167

    Article  Google Scholar 

  • Adragna NC, White RE, Orlov SN, Lauf PK (2000) K-Cl cotransport in vascular smooth muscle and erythrocytes: possible implication in vasodilation. Am J Physiol 278:C381–C390

    Google Scholar 

  • Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463-F476

    Google Scholar 

  • Beauge LA, Adragna N (1971) The kinetics of ouabain inhibition and the partition of rubidium influx in human red blood cells. J Gen Physiol 57:576–592

    Article  Google Scholar 

  • Bell DA, Leblond PF, Leddy JP, Lauf PK, LaCelle PL, Weed RI (1972) Immune hemolysis. J Immunol 108:467–474

    Google Scholar 

  • Bergh CS, Kelley J, Dunham PB (1990) K-Cl cotransport in LK sheep erythrocytes: kinetics of stimulation by cell swelling. J Membrane Biol 117:177–188

    Article  Google Scholar 

  • Bernhardt I (1994) Alteration of cellular features after exposure to low ionic strength medium. In: Bauer J (ed) Cell electrophoresis. CRC Press, Boca Raton, pp 163–179

    Google Scholar 

  • Bize I, Dunham PB (1994) Staurosporine, a protein kinase inhibitor, activates K-Cl co-transport in LK sheep erythrocytes. Am J Physiol 266:C759–C770

    Google Scholar 

  • Bize I, Dunham PB (1995) H2O2 activates red blood cell K-Cl cotransport via stimulation of a phosphatase. Am J Physiol 269:C849–C855

    Google Scholar 

  • Bize I, Mufioz P, Canessa M, Dunham PB (1998) Stimulation of membrane serine-threonine phosphatase in erythrocytes by hydrogen peroxide and staurosporine. Am J Physiol 247:C440–C446

    Google Scholar 

  • Bize I, Giivenc B, Robb A, Buchbinder G, Brugnara C (1999) Serine/threonine protein phosphatases and regulation of K-Cl cotransport in human erythrocytes. Am J Physiol 277:C926–C936

    Google Scholar 

  • Blostein R, Grafova E (1990) Decrease in Na+-K+-ATPase associated with maturation of sheep reticulocytes. Am J Physiol 259:C241–C250

    Google Scholar 

  • Blostein R, Whittington ES (1973) Studies of high potassium and low potassium sheep erythrocyte membrane sodium-adenosine triphophatase. J Biol Chem 248:1772–1777

    Google Scholar 

  • Blostein R, Whittington ES, Kuebler ES (1974) Na+-ATPase of mammalian erythrocyte membranes: kinetic changes associated with postnatal development and following active erythropoiesis. Ann New York Acad Sci 242:305–316

    Article  ADS  Google Scholar 

  • Bratcher RL, Kanik-Ennulat CL, Logue PJ, Dunham PB (1983) Stimulation of the Na/K-pump in LK sheep erythrocytes by immunoglobulin fragments. Immunol Commun 12:565–571

    Google Scholar 

  • Brown AM, Ellory JC, Young JD, Lew VL (1978) A calcium-activated potassium channel present in foetal red cells of the sheep but absent from reticulocytes and mature red cells. Biochim Biophys Acta 511:163–175

    Article  Google Scholar 

  • Brugnara C, Van Ha T, Tosteson DC (1989) Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells. Am J Physiol 256:C994–C1003

    Google Scholar 

  • Campbell EH, Gibson JS, Ellory JC (1998) Oxygen-dependent K fluxes in sheep red cells. J Physiol 506:679–688

    Article  Google Scholar 

  • De Franceschi L, Fumagalli L, Olivieri O, Corrocher R, Lowell CA, Berton G (1997) Deficiency of Src family kinases Fgr and Kck results in activation of erythrocyte K/Cl co-transport. J Clin Invest 99:220–227

    Article  Google Scholar 

  • Delpire E, Lauf PK (1991a) Kinetics of Cl-dependent K fluxes in hyposmotically swollen low K sheep erythrocytes. J Gen Physiol 97:173–193

    Article  Google Scholar 

  • Delpire E, Lauf PK (1991b) Trans-effects of cellular K and Cl on ouabain-resistant Rb(K) influx in low K sheep red blood cells. Further evidence of asymmetry of K-Cl cotransport. Pflügers Arch 419:540–542

    Article  Google Scholar 

  • Delpire E, Lauf PK (1991c) Magnesium and ATP dependence of K:C1 cotransport in low K sheep red cells. J Physiol 441:219–231

    Google Scholar 

  • Delpire E, Lauf PK (1992) Kinetics of DIDS inhibition of swelling-activated K-Cl cotransport in low K sheep erythrocytes. J Membrane Biol 126:89–96

    Article  Google Scholar 

  • Delpire E, Mount DB (2002) Human and murine phenotypes associated with defects in cation-chloride transport. Annu Rev Physiol 64:803–843

    Article  Google Scholar 

  • Dunham PB (1976a) Passive potassium transport in LK sheep red cells. Effects of anti-L antibody and intracellular potassium. J Gen Physiol 68:567–581

    Article  Google Scholar 

  • Dunham PB (1976b) Anti-L serum — two populations of antibodies affecting cation transport in LK erythrocytes of sheep and goats. Biochim Biophys Acta 443:219–226

    Article  Google Scholar 

  • Dunham PB (1990) K,C1 cotransport in mammalian erythrocytes. In: Reuss L, Russell JM, Szabo G (eds) Regulation of potassium transport across biological membranes. Univ Texas Press, Austin, pp 331–360

    Google Scholar 

  • Dunham PB (1992) Ion transport in sheep red blood cells. Comp Biochem Physiol 102A:625–630

    Article  Google Scholar 

  • Dunham PB (1995) Effects of urea on K-Cl cotransport in sheep red blood cells: evidence for two signals of swelling. Am J Physiol 269:C1026–C1032

    Google Scholar 

  • Dunham PB, Anderson C (1987) On the mechanism of stimulation of the Na/K-pump of LK sheep erythrocytes by anti-L antibody. J Gen Physiol 90:3–25

    Article  Google Scholar 

  • Dunham PB, Biostein R (1976) Active potassium transport in reticulocytes of high-K+ and low-K+ sheep. Biochim Biophys Acta 455:749–758

    Article  Google Scholar 

  • Dunham PB, Blostein R (1997) L antigens of sheep red blood cell membranes and modulation of ion transport. Am J Physiol 272:C357–C368

    Google Scholar 

  • Dunham PB, Ellory JC (1980) Stimulation of the sodium-potassium pump by trypsin in low potassium type erythrocytes of goats. J Physiol 301:25–37

    Google Scholar 

  • Dunham PB, Ellory JC (1981) Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride. J Physiol 318:511–530

    Google Scholar 

  • Dunham PB, Hoffman JF (1971a) The number of Na+:K+-pump sites on red blood cells from HK and LK lambs. Biochim Biophys Acta 241:399–402

    Article  Google Scholar 

  • Dunham PB, Hoffman JF (1971b) Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep. J Gen Physiol 58:94–116

    Article  Google Scholar 

  • Dunham PB, Klimczak J, Logue PJ (1993) Swelling activation of K-Cl cotransport in LK sheep erythrocytes: a three state process. J Gen Physiol 101:733–766

    Article  Google Scholar 

  • Dunham PB, Tucker EM, Simonsen E, Ellory JC (1980) Stimulation of active K+ transport by anti-L antibodies in trypsin-treated low potassium sheep erythrocytes. J Gen Physiol 75:345–350

    Article  Google Scholar 

  • Ellory JC, Carleton S (1974) (Na+-K+)-activated ATPase in cattle erythrocytes. Biochim Biophys Acta 363:397–403

    Google Scholar 

  • Ellory JC, Dunham PB (1980) Volume-dependent passive potassium transport in LK sheep red cells. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes (Alfred Benzon symposium 14). Munksgaard, Copenhagen, pp 409–427

    Google Scholar 

  • Ellory JC, Maher P (1977) A change in the internal affinity of LK goat red-cell sodium pumps induced by high pH. Biochim Biophys Acta 471:111–117

    Article  Google Scholar 

  • Ellory JC, Tucker EM (1969a) Stimulation of the potassium transport system in low potassium type sheep red cells by a specific antigen antibody reaction. Nature 222:477–478

    Article  ADS  Google Scholar 

  • Ellory JC, Tucker EM (1969b) Active potassium transport in the immature red cells of anaemic sheep. J Physiol 208:18–19

    Google Scholar 

  • Ellory JC, Tucker EM (1970a) High potassium type red cells in cattle. J Agric Sci Cambridge 74:595–596

    Article  Google Scholar 

  • Ellory JC, Tucker EM (1970b) Active potassium transport and the L and M antigens of sheep and goat red cells. Biochim Biophys Acta 219:160–168

    Article  Google Scholar 

  • Ellory JC, Tucker EM (1971) The M-L blood group system and active postassium transport in sheep reticulocytes. Anim Blood Grps biochem Genet 2:77–87

    Google Scholar 

  • Ellory JC, Tucker EM (1983) Cation transport in red blood cells. In: Agar NS, Board PG (eds) Red blood cells of domestic mammals. Elsevier, Amsterdam, pp 291–314

    Google Scholar 

  • Ellory JC, Feinstein A, Herbert J (1973) Stimulation of active potassium transport in LK sheep red cells by monovalent fragments of anti-L antibody. Immunochemistry 10:785–787

    Article  Google Scholar 

  • Erdmann A, Bernhardt I, Pittman SJ, Ellory JC (1991) Low potassium-type but not high potassium-type sheep red blood cells show passive K+ transport induced by low ionic strength. Biochim Biophys Acta 1061:85–88

    Article  Google Scholar 

  • Evans JV (1954) Electrolyte concentrations in red blood cells of British breeds of sheep. Nature 174:931

    Article  ADS  Google Scholar 

  • Evans JV (1956) The stability of the potassium concentration in the erythrocytes of individual sheep compared with the variability between different sheep. J Physiol 136:41–59

    Google Scholar 

  • Evans JV, King JWB (1955) Genetic control of sodium and potassium concentrations in the red blood cells of sheep. Nature 176:171

    Article  ADS  Google Scholar 

  • Farquharson BE, Dunham PB (1986) Intracellular potassium promotes antibody binding to an antigen associated with the Na/K-pump of sheep erythrocytes. Biochim Biophys Res Commun 134:982–988

    Article  Google Scholar 

  • Ferrell CM, Lauf PK, Wilson BA, Adragna NC (2000) Lithium and protein kinase C. Modulators regulate swelling-activated K-Cl cotransport and reveal a complete phos-phatidylinositol cycle in low K sheep erythrocytes. J Membrane Biol 177:81–93

    Article  Google Scholar 

  • Flatman PW, Adragna NC, Lauf PK (1996) Role of protein kinases in regulating sheep erythrocyte K-Cl cotransport. Am J Physiol 271:C255–C263

    Google Scholar 

  • Fujise H, Lauf PK (1987) Swelling, NEM, and A23187 activate Cl--dependent K+ transport in high K+ sheep red cells. Am J Physiol 252:C197–C204

    Google Scholar 

  • Fujise H, Cruz P, Reo NV, Lauf PK (1991) Relationship between total magnesium concentration and free intracellular magnesium in sheep red blood cells. Biochim Biophys Acta 1094:51–54

    Article  Google Scholar 

  • Fujise H, Higa K, Nakayama T, Wada K, Ochiai H, Tanabe Y (1997) Incidence of dogs possessing red blood cells with high K in Japan and East Asia. J Vet Med Sci 59:495–497

    Article  Google Scholar 

  • Funder J, Wieth JO (1967) Effects of some monovalent anions on fluxes of Na and K, and on glucose metabolism of ouabain treated human red cells. Acta Physiol Scand 71:168–185

    Article  Google Scholar 

  • Gardos G (1958) Effect of ethylenediamine-tetraacetate on the permeability of human erythrocytes. Acta Physiol Acad Sci Hung 14:1–5

    Google Scholar 

  • Gibson JS, Speake PF, Ellory JC (1998) Differential oxygen sensitivity of the KCl cotrans-porter in normal and sickle red blood cells. J Physiol 511:225–234

    Article  Google Scholar 

  • Gillen CM, Brill PS, Payne JA, Forbush III B (1996) Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. J Biol Chem 271:16237–16244

    Article  Google Scholar 

  • Glynn IM, Ellory JC (1972) Stimulation of a sodium pump by an antibody that increases the apparent affinity of the sodium ions of the sodium-loading sites. In: Bolis L, Keynes RD, Wilbrandt W (eds) Role of membrane in secretory processes. North Holland, Amsterdam; American Elsevier, New York, pp 224–237

    Google Scholar 

  • Hall AC, Ellory JC (1986) Effect of high hydrostatic pressure on ‘passive’ monovalent cation transport in human red cells. J Membrane Biol 94:1–7

    Article  Google Scholar 

  • Halperin JA, Brugnara C, Van Ha T, Tosteson DC (1990) Voltage-activated cation permeability in high-potassium but not low-potassium red blood cells. Am J Physiol 258:C1169–C1172

    Google Scholar 

  • Hiki K, D’Andrea RJ, Furze J, Crawford J, Woollatt E, Sutherland GR, Vadas MA, Gamble JR (1999) Cloning, characterization, and chromosomal location of a novel human K+-Cl- cotransporter. J Biol Chem 274:10661–10667

    Article  Google Scholar 

  • Hoffman PG, Tosteson DC (1971) Active sodium and potassium transport in high potassium and low potassium sheep red cells. J Gen Physiol 58:438–466

    Article  Google Scholar 

  • Holtzman EJ, Kumar S, Faaland CA, Warner F, Logue PJ, Erickson SJ, Ricken G, Waldman G, Dunham PB (1998) Cloning, characterization, and gene organization of K+-Cl- cotransporter from pig and human kidney and C. elegans. Am J Physiol 275:F550–F564

    Google Scholar 

  • Jennings ML (1999) Volume-sensitive K+/Cl- cotransport in rabbit erythrocytes: analysis of the rate limiting activation and inactivation events. J Gen Physiol 114:743–757

    Article  Google Scholar 

  • Jennings ML, Al-Rohil N (1990) Kinetics of activation and inactivation of swelling-induced K+/Cl- cotransport. Volume sensitive parameter is the rate constant for inactivation. J Gen Physiol 95:1021–1040

    Article  Google Scholar 

  • Joiner CH, Lauf PK (1975) The effect of anti-L on ouabain binding to sheep erythrocytes. J Membrane Biol 21:99–112

    Article  Google Scholar 

  • Joiner CH, Lauf PK (1978a) The correlation between ouabain binding and potassium pump inhibition in human and sheep erythrocytes. J Physiol 283:155–175

    Google Scholar 

  • Joiner CH, PK Lauf (1978b) Modulation of ouabain binding and potassium pump fluxes by cellular sodium and potassium in human and sheep erythrocytes. J Physiol 283:177–196

    Google Scholar 

  • Kaji D (1986) Volume-sensitive K transport in human erythrocytes. J Gen Physiol 88:719–738

    Article  Google Scholar 

  • Kaji D (1993) Effect of varying membrane potential on K-Cl transport in human erythrocytes. Am J Physiol 264:C376–C382

    Google Scholar 

  • Kelly SJ, Thomas R, Dunham PB (2000) Candidate inhibitor of the volume-sensitive kinase regulating K-Cl cotransport: the myosin light chain kinase inhibitor ML-7. J Membrane Biol 178:31–41

    Article  Google Scholar 

  • Kerr SE (1937) Studies on the inorganic composition of blood. The relationship of potassium to the acid soluble phosphorous franction. J Biol Chem 117:227–235

    Google Scholar 

  • Kim HD, Theg BE, Lauf PK (1980) Effect of anti-L on K influx and in vitro maturation. J Gen Physiol 76:109–121

    Article  Google Scholar 

  • Kregenow FM (1981) Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu Rev Physiol 43:493–505

    Article  Google Scholar 

  • Kummerow D, Hamann J, Browning JA, Wilkins R, Ellory JC, Bernhardt I (2000) Variations of intracellular pH in human erythrocytes via K+(Na+)/H+ exchanger under low ionic strength conditions. J Membrane Biol 176:207–216

    Article  Google Scholar 

  • Lauf PK (1975) Antigen-antibody reactions and cation transport in biomembranes: im-munophysiological aspects. Biochim Biophys Acta 415:173–229

    Article  Google Scholar 

  • Lauf PK (1978) Membrane immunological reactions and transport. In: Giebisch G, Toste-son DC, Ussing HH (eds) Membrane transport in biology, vol I. Springer, Berlin, pp 291–348

    Google Scholar 

  • Lauf PK (1983) Thiol stimulated passive K/Cl transport in sheep red cells. I. Dependence on chloride and external K+(Rb+) ions. J Membrane Biol 73:237–246

    Article  Google Scholar 

  • Lauf PK (1984a) Thiol-dependent, passive K/Cl transport in sheep erythrocytes. IV. Furosemide inhibition and the role of external Rb+, Na+, and Cl. J Membrane Biol 77:57–62

    Article  Google Scholar 

  • Lauf PK (1984b) Thiol-dependent passive K+ Cl transport in sheep red blood cells. Vl. Functional heterogeneity and immunological identity with volume-stimulated K+ (Rb+) fluxes. J Membrane Biol 82:167–178

    Article  Google Scholar 

  • Lauf PK (1985a) Passive K+-Cl- fluxes in low K+ sheep erythrocytes. Modulation by A23187 and bivalent cations. Am J Physiol 249:C271–C278

    Google Scholar 

  • Lauf PK (1985b) K+-Cl- cotransport: sulfhydryls, divalent cations, and the mechamism of volume activation in a red cell. J Membrane Biol 88:1–13

    Article  Google Scholar 

  • Lauf PK (1988a) Thiol-dependent K:Cl transport in sheep red blood cells. VIII. Activation through metabolically and chemically reversible oxidation by diamide. J Membrane Biol 101:179–188

    Article  Google Scholar 

  • Lauf PK (1988b) Kinetic comparison of ouabain-resistant K:Cl fluxes (K:Cl [Co]-transport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation. Mol Cell Biochem 82:97–106

    Google Scholar 

  • Lauf PK (1988c) Volume and anion dependence of ouabain-resistant K-Rb fluxes in sheep red blood cells. Am J Physiol 255:C331–C339

    Google Scholar 

  • Lauf PK (1990) Thiol-dependent passive K:Cl transport in sheep red blood cells. X. A hydroxylamine oxidation induced K:C1 cotransport blocked by diethylpyrocarbonate. J Membrane Biol 118:153–159

    Article  Google Scholar 

  • Lauf PK (1991) Foreign anions modulate volume set point of sheep erythrocyte K-Cl co-transport. Am J Physiol 260:C503–C512

    Google Scholar 

  • Lauf PK (1992) Incorporation of 3H-N-ethmaleimide into sheep red cell membrane thiol groups following protection by diamide-induced oxidation. Mol Cell Biochem 114:13–20

    Article  Google Scholar 

  • Lauf PK, Adragna NC (1995) Temperature-induced functional deocclusion of thiols inhibitory for sheep erythrocyte K-Cl cotransport. Am J Physiol 269:C1167–C1175

    Google Scholar 

  • Lauf PK, Adragna NC (1996) A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium. J Gen Physiol 108:341–350

    Article  Google Scholar 

  • Lauf PK, Adragna NC (1998) Functional evidence for a pH sensor of erythrocyte K-Cl co-transport through inhibition by internal protons and diethylpyrocarbonate. Cell Physiol Biochem 8:46–60

    Article  Google Scholar 

  • Lauf PK, Adragna NC (2000) K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem 10:341–354

    Article  Google Scholar 

  • Lauf PK, Dessent MP (1973) Effect of metabolic state on immune-hemolysis of positive low potassium (LK) sheep red blood cells by iso-immune anti-L serum and rabbit serum complement. Immunol Commun 2:193–212

    Google Scholar 

  • Lauf PK, Joiner CH (1976) Increased potassium transport and ouabain binding in human Rhnull red blood cells. Blood 48:457–468

    Google Scholar 

  • Lauf PK, Sun WW (1976) Binding characteristics of M and L isoantibodies to high and low potassium sheep red cells. J Membrane Biol 28:351–372

    Article  Google Scholar 

  • Lauf PK, Theg BE (1980a) A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochim Biophys Res Commun 92:1422–1428

    Article  Google Scholar 

  • Lauf PK, Theg BE (1980b) N-ethylmaleimide enhances selectively passive K+ permeability in low potassium sheep red cells. Adv Physiol Sci 6:285–291

    Google Scholar 

  • Lauf PK, Valet G (1983) Na+ K+-pump and passive K+ transport in large and small red cell populations of anaemic high and low K+ sheep. J Cell Physiol 116:35–44

    Article  Google Scholar 

  • Lauf PK, Tosteson DC (1969) The M-antigen in HK and LK sheep red cell membranes. J Membrane Biol 1:177–193

    Article  Google Scholar 

  • Lauf PK, Rasmusen BA, Hoffman PG, Dunham PB, Cook P, Parmelee ML, Tosteson DC (1970) Stimulation of active potassium transport in LK sheep red cells by blood group-L-antiserum. J Membrane Biol 3:1–13

    Article  Google Scholar 

  • Lauf PK, Parmelee ML, Snyder JJ, Tosteson DC (1971) Enzymatic modification of the L and M antigens in LK and HK sheep erythrocytes and their membranes. J Membrane Biol 4:52–67

    Article  Google Scholar 

  • Lauf PK, Stiehl BJ, Joiner CH (1977) Active and passive cation transport and L antigen heterogeneity in low potassium sheep red cells. J Gen Physiol 70:221–242

    Article  Google Scholar 

  • Lauf PK, Shoemaker DG, Joiner CH (1978) Changes in K+ pump transport and ouabain binding sites in erythrocytes of genetically low K+ lambs. Biochim Biophys Acta 507:544–548

    Article  Google Scholar 

  • Lauf PK, Bauer J, Adragna NC, Fujise H, Zade Oppen AM, Ryu KH, Delpire E (1992) Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol 263:C917–C932

    Google Scholar 

  • Lauf PK, Erdmann A, Adragna NC (1994) Response of K-Cl cotransport to pH, and the role of Mg in volume clamped low K sheep erythrocytes: three equilibrium states. Am J Physiol 266:C95–C103

    Google Scholar 

  • Lauf PK, Adragna NC, Agar N (1995) Glutathione removal reveals kinases as common targets for K-Cl cotransport stimulation in sheep erythrocytes. Am J Physiol 269:C234–C241

    Google Scholar 

  • Lauf PK, Ahmed S, Adragna NC (2000) NH+ 4 inhibits K-Cl cotransport on low K sheep red blood cells. J Gen Physiol 114:57a

    Google Scholar 

  • Lauf PK, Zhang J, Ðelpire E, Fyffe REW, Mount DB, Adragna NC (2001a) Erythrocyte K-Cl cotransport: immunocytochemical and functional evidence for more than one KCC isoform in HK and LK sheep red blood cells. Comp Biochem Physiol 130A:499–509

    Google Scholar 

  • Lauf PK, Zhang J, Gagnon KBE, Delpire E, Fyffe REW, Adragna NC (2001b) K-Cl co-transport: immunohistochemical and ion flux studies in human embryonic kidney (HEK293) cells transfected with full-length and C-terminal-comain-truncated KCC1 cDNAs. Cell Physiol Biochem 11:143–160

    Article  Google Scholar 

  • Lee P, Woo A, Tosteson CD (1966) Cytodifferentiation and membrane transport properties in LK sheep red Cells. J Gen Physiol 50:379–390

    Article  Google Scholar 

  • Logue P, Anderson C, Kanik C, Farquharson B, Dunham PB (1983) Passive potassium transport in LK sheep red cells. Modification by N-ethylmaleimide. J Gen Physiol 81:861–885

    Article  Google Scholar 

  • Lytle C, McManus TJ, Haas M (1998) A model of Na-K-2C1 cotransport based on ordered ion binding and glide symmetry. Am J Physiol 274:C299–C309

    Google Scholar 

  • Marini AM, Matassi G, Raynal V, Andre B, Cartron JP, Chief-Zahar B (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nature Genetics 25:341–344

    Google Scholar 

  • Miyamoto HT, Ikehara H, Yamaguchi K, Hosokawa TY, Masuya T (1986) Kinetic mechanism of Na+, K+, Cl--cotransport as studied by Rb+ influx into HeLa cells: effects of extracellular monovalent ions. J Membrane Biol 92:135–150

    Article  Google Scholar 

  • Mount DB, Mercado A, Song L, Xu J, George AL Jr, Delpire E, Gamba G (2000) Cloning and characterization of KCC3 and KCC4, new members of the cation chloride cotrans-porter gene family. J Biol Chem 274:16355–16362

    Article  Google Scholar 

  • Ortiz-Carranza O, Adragna NC, Lauf PK (1996) Modulation of K-Cl cotransport in volume-clamped low-K sheep erythrocytes by pH, magnesium and ATP. Am J Physiol 271:0049–0058

    Google Scholar 

  • Ortiz-Carranza O, Adragna NC, Carnes L, Lauf PK (1997a) Two operational modes of K-Cl cotransport in low K+ sheep red blood cells. Cell Physiol Biochem 7:251–263

    Article  Google Scholar 

  • Ortiz-Carranza O, Miller ME, Adragna NC, Lauf PK (1997b) Alkaline pH and internal calcium increase Na+ and K+ effluxes in LK sheep red blood cells in CI free solutions. J Membrane Biol 156:287–295

    Article  Google Scholar 

  • Parker JC, Colclasure GC, McManus TJ (1991) Coordinated regulation of shrinkage-induced Na/H exchange and swelling-induced [K-Cl] cotransport in dog red cells. J Gen Physiol 98:869–880

    Article  Google Scholar 

  • Pittman S J, Ellory JC, Tucker EM, Newbold CI (1990) Identification of a 25 kDa poly-petide associated with the L antigen in low potassium-type sheep red cells. Biochim Biophys Acta 1022:408–410

    Article  Google Scholar 

  • Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ (1999) Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol 277:0210–0219

    Google Scholar 

  • Rasmusen BA (1969) A blood group antibody which reacts exclusively with LK sheep red blood cells. Genetics 61:49

    Google Scholar 

  • Rasmusen BA, Hall JG (1966) Association between potassium concentration and serological type of sheep red blood cells. Science 151:1551–1551

    Article  ADS  Google Scholar 

  • Richter S, Hamann J, Kummerow D, Bernhardt I (1997) The monovalent cation “leak” transport in human erythrocytes: an electroneutral exchange process. Biophys J 73:733–745

    Article  Google Scholar 

  • Ryu KH, Adragna NC, Lauf PK (1989) Kinetics of Na-Li exchange in high and low K sheep red blood cells. J Am Physiol 257:C58–C64

    Google Scholar 

  • Sachs JR (1994) Soluble polycations and cationic amphiphiles inhibit volume-sensitive K-Cl cotransport in human red cell ghosts. Am J Physiol 266:C997–C1005

    Google Scholar 

  • Sachs JR, Martin DW (1999) Role of polyamine structure in inhibition of K+ CI cotransport in human red cell ghosts. J Physiol 520:723–735

    Article  Google Scholar 

  • See JRH, Adragna NC, PK Lauf (1996) Osmotic resistance of low and high potassium sheep red blood cells: comparison with ‘ROL’ gene model. Blood 88:54a

    Google Scholar 

  • Shrager P, Tosteson DC, Lauf PK (1972) Biochemical characterization of a lipid-dependent membrane protein antigen in HK sheep red cells. Biochim Biophys Acta 290:186–199

    Article  Google Scholar 

  • Sims PJ, Lauf PK (1978) Steady-state analysis of tracer exchange across the C5b-9 complement lesion in a biological membrane. Proc Natl Acad Sci USA 75:5669–5673

    Article  ADS  Google Scholar 

  • Smalley CE, Tucker EM, Ellory JC, Young JD (1983) The solubilization of the L and M antigens from sheep red cell membranes. Biochim Biophys Acta 733:283–285

    Article  Google Scholar 

  • Smalley CE, Tucker EM, Sepulveda I, Ellory JC (1984) Solubilization from sheep erythrocyte membranes of the potassium transport-associated antigens Lp, Ll and M, and the molecular size determination of the Lp antigen by radiation inactivation. Biochem Soc Trans 12:306–307

    Google Scholar 

  • Snyder JJ, Rasmusen BA, Lauf PK (1971) The nature of the antibody in iso-immune anti-L sera affecting active potassium transport in LK sheep red cells. J Immunol 107:772–781

    Google Scholar 

  • Su W, Shmukler BE, Chernova MN, Stuart-Tilley AK, De Francesci L, Brugnara C, Alper SL (1999) Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression and functional regulation. Am J Physiol 277:C899–C912

    Google Scholar 

  • Tang Y (1997) Biochemical characterization of the M antigen and antibody system in HK sheep erythrocytes. Ph.D. thesis, Wright State University

    Google Scholar 

  • Tanner MJ (1993) The major integral proteins of the human red cell. Bailliere’s Clin Haematol 6:333–356

    Article  Google Scholar 

  • Timmer RT, Klein JD, Bagnasco SM, Doran JJ, Gunn RB, Sands JM (2001) Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am J Physiol 281:C1318–C1325

    Google Scholar 

  • Tosteson DC (1966) Some properties of the plasma membranes of high potassium and low potassium sheep red cells. Ann New York Acad Sci 137:577–590

    Article  ADS  Google Scholar 

  • Tosteson DC, Hoffman JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 44:169–194

    Article  Google Scholar 

  • Tosteson DC, Cook P, Blount R (1965) Separation of adenosine triphosphatase of HK and LK sheep red cell membranes by density gradient centrifugation. J Gen Physiol 48:1125–1143

    Article  Google Scholar 

  • Tucker EM, Ellory JC (1971) The M-L blood group system and active potassium transport in sheep reticulocytes. Anim Blood Grps Biochem Genet 2:77–87

    Article  Google Scholar 

  • Tucker EM, Ellory JC, Wooding FBP, Morgan G, Herbert J (1976) The number and specificity of L antigen sites on low potassium type sheep red cells. Proc R Soc London 194:271–277

    Article  Google Scholar 

  • Tucker EM, Smalley CE, Ellory JC, Dunham PB (1982) The transition from HK to LK phenotype in the red cells of newborn genetically LK lambs. J Gen Physiol 79:893–915

    Article  Google Scholar 

  • Valet G, Franz G, Lauf PK (1978) Different red cell populations in newborn, genetically low potassium sheep: relation to hematopoietic, immunnologic and physiologic differentiation. J Cell Physiol 94:215–228

    Article  Google Scholar 

  • Whittington ES, Biostein R (1971) Comparative properties of high potassium and low potassium sheep erythrocyte membrane sodium-activated adenosine triphosphatase. J Biol Chem 246:3518–3523

    Google Scholar 

  • Wiedmer T, Lauf PK (1981) Properties of the M antigen solubilized from genetically high potassium sheep red cells. Membrane Biochem 4:31–47

    Article  Google Scholar 

  • Wiley JS, Cooper RA (1974) A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. J Clin Invest 53:745–755

    Article  Google Scholar 

  • Xu Z-C, Dunham PB, Munzer JS, Silvius JR, Biostein R (1992) Rat kidney Na-K-pumps incorporated into low-K+ sheep red blood cell membranes are stimulated by anti-Lp antibody. Am J Physiol 263:C1007–C1014

    Google Scholar 

  • Xu Z-C, Dunham PB, Dyer B, Blostein R (1993) Differentiation of Na+-K+-pumps of low-K+ sheep red blood cells is promoted by L membrane antigens. Am J Physiol 265:C99–C105

    Google Scholar 

  • Xu Z-C, Dunham PB, Dyer B, Blostein R (1994) Decline in number of Na+-K+-pumps on low-K+ sheep reticulocytes during maturation is modulated by L antigen. Am J Physiol 266:C1173–C1181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lauf, P.K. (2003). Active and Passive Monovalent Ion Transport Association with Membrane Antigens in Sheep Red Cells: a Molecular Riddle. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics