Skip to main content

Amino Acid Transport in Disease

  • Chapter
  • 335 Accesses

Abstract

Amino acid uptake and metabolism by cells plays an important role in regulating and maintaining cellular function. In most mammalian cells, amino acids are a major source of energy and the products of their metabolism influence many physiological and pathological processes. Many pathophysiological alterations observed in clinical syndromes can only be elucidated at the cellular or molecular level. Membrane transport is essential for physiological functioning of cells, and alterations in transport may help explain several pathological changes in disease states. Red blood cells (RBCs) lack a nucleus and mitochondria and have lost the ability to synthesize protein, however, they are resilient and capable of extraordinary changes in shape, and their haemoglobin efficiently transports and delivers oxygen. The adequate functioning and longevity of erythrocytes depend on a satisfactory relationship between the cell membrane and metabolism (Hillman and Finch 1996). In the absence of mitochondria, RBCs have a limited ability to metabolize amino and fatty acids, and their energy supply is derived largely from the breakdown of glucose. The specific metabolic characteristics of RBCs provide a particular need for amino acid transport that is not entirely clear. Red cells synthesize glutathione and therefore require transport systems capable of supplying amino acid precursors of this molecule, namely cysteine, glutamate and glycine. Glutathione protects RBCs from exogenous oxidants and reactive electrophiles (Tun-nicliff 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arese M, Strasly M, Ruva C, Costamagna C, Ghigo D, MacAllister R, Verzetti G, Tetta C, Bosia A, Bussolino F (1995) Regulation of nitric oxide synthesis in uraemia. Nephrol Dial Transplant 10:1386–1397

    Google Scholar 

  • Bachetti T, Comini L, Agnoletti L, Agnoletti L, Pedersini P, Gaia G, Cargnoni A, Bellet M, Curello S, Ferrari R (1998) Effects of chronic noradrenaline on the nitric oxide pathway in human endothelial cells. Basis Res Cardiol 93:250–256

    Google Scholar 

  • Bergstrom J, Alvestrand A, Fürst P (1990) Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 38:108–114

    Google Scholar 

  • Bleiber R, Eggert W, Reichmann G, Kunze D (1980) Erythrocyte and plasma lipids in terminal renal insufficiency. Acta Haematol 63:117–123

    Google Scholar 

  • Bogle RG, Baydoun AR, Pearson JD, Moncada S, Mann GE (1992) L-arginine transport is increased in macrophages generating nitric oxide. Biochemical Journal 284:15–18

    Google Scholar 

  • Bogle RG, Baydoun AR, Pearson JD, Mann GE (1996) Regulation of L-arginine transport and nitric oxide release in superfused porcine aortic endothelial cells. J Physiol 490:229–241

    Google Scholar 

  • Brandt RR, Burnett JC (1997) Humoral control of the kidney during congestive heart failure: role of cardiac natriuretic peptides. In: Poole-Wilson PAP, Colluci WS, Massie BM, Chatterjee K, Coats AJS (eds) The heart failure. Church Livingstone, New York, pp 143–154

    Google Scholar 

  • Braunwald E (1992) Pathophysiology of heart failure. In: Braunwald E (ed) Heart disease. A textbook of cardiovascular Medicine. WB Saunders, Philadelphia, pp 393–418

    Google Scholar 

  • Brunini TMC, Roberts N, Yaqoob M, Ellory JC, Mann GE, Mendes Ribeiro AC (1998) L-arginine-nitric oxide pathway in a rat model of uraemia. J Physiol 506P:33P

    Google Scholar 

  • Brunini TMC, Khoeler A, Yaqoob M, Ellory JC, Mann GE, Mendes Ribeiro AC (1999) Blood cells from patients on continuous ambulatorial peritoneal dialysis exhibit increased L-arginine-infiux via the cationic amino acid transport system y+. J Physiol 517P:52P

    Google Scholar 

  • Cangiano C, Cardelli-Cangiano P, Cascino A, Ceci F, Fiori A, Mulieri M, Muscaritoli M, Barberini C, Strom R, Fanelli FR (1988) Uptake of amino acids by brain microvessels isolated from rats with experimental chronic renal failure. J Neurochem 51:1675–1681

    Google Scholar 

  • Castellino P, Solini A, Luzi L, Barr JG, Smith DJ, Petrides A, Giordano M, Carroll C, De-Fronzo RA (1992) Glucose and amino acid metabolism in chronic renal failure: effect of insulin and amino acids. Am J Physiol 262:F168–F176

    Google Scholar 

  • Chen LY, Mehta JL (1998) Evidence for the presence of L-arginine-nitric oxide pathway in human red blood cells: relevance in the effects of red blood cells on platelet function. J Cardiovasc Pharmacol 32:57–61

    Google Scholar 

  • Chiu D, Vichinsky E, Yee M, Kleman K, Lubin B (1982) Peroxydation, vitamin E and sickle cell anemia. Ann New York Acad Sci 393:323–335

    ADS  Google Scholar 

  • Coats AJS, Poole-Wilson PA (1996) The syndrome of heart failure In: Weatherall DJ, Ledingham JGG, Warrel DA (eds) Oxford textbook of medicine, 3rd edn. Oxford University Press, Oxford, pp 2228–2237

    Google Scholar 

  • Comini L, Bachetti T, Gaia G, Pasini E, Agnoletti L, Pepi P, Ceconi C, Curello S, Ferrari R (1996) Aorta and skeletal muscle NO synthase expression in experimental heart failure. J Mol Cell Cardiol 28:2241–2248

    Google Scholar 

  • Constantino A (1913) Die Permeabilität der Blukörperchen für Aminosäuren. Biochem Z 55:411–418

    Google Scholar 

  • Cotton JR, Woodward T, Carter NW, Knochel JP (1979) Resting skeletal muscle membrane potential as index of uremic toxicity. J Clin Invest 63:501–506

    Google Scholar 

  • Davies CH, Harding SE, Poole-Wilson PA (1996) Cellular mechanisms of contractile dysfunction in human heart failure. Eur Heart J 17:189–198

    Google Scholar 

  • Deliconstantinos G, Villiotou V, Stavrides JC, Salemes N, Gogas J (1995) Nitric oxide and peroxynitrite production by human erythrocytes. A causative factor of toxic anemia in breast cancer patients. Anticancer Res 15:1435–1446

    Google Scholar 

  • Descamps-Latscha B, Herbelin A, Nguyen AT, Roux-Lombard P, Zinggraff J, Moynot A, Verger C, Dahmane D, De Groote D, Jungers P (1995) Balance between IL-1, TNF and their specific inhibitors in chronic renal failure and maintenance dialysis. J Immunol 154:882–892

    Google Scholar 

  • Deuticke B, Haest CWM (1987) Lipid modulation of transport proteins in vertebrate cell membranes. Annu Rev Physiol 49:221–235

    Google Scholar 

  • Devés R, Boyd CA (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545

    Google Scholar 

  • Devés R, Angelo S, Chavez P (1993) N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. J Physiol 468:753–66

    Google Scholar 

  • De Deyn P, Marescau B, Lornoy W, Becaus I, Lowenthal A (1986) Guanidino compounds in uraemic dialysed patients. Clin Chim Acta 157:143–150

    Google Scholar 

  • De Wardener HE, Macgregor GA (1980) Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int 18:1–9

    Google Scholar 

  • Dougnac A, Riquelme A, Calvo M, Andresen M, Magedzo A, Eugeni E, Marshall G, Gutierrez M (2001) Study of cytokines kinetics in severe sepsis and its relantionship with mortality and score of organic dysfunction. Rev Med Chil 129:347–358

    Google Scholar 

  • Drexler H (1997) Endothelial factors. In: Poole-Wilson PAP, Colluci WS, Massie BM, Chatterjee K, Coats AJS (eds) The heart failure. Church Livingstone, New York, pp 173–186

    Google Scholar 

  • Durante W, Liao L, Iftikhar I, Brien WEO, Schafer AI (1996) Differencial regulation of L-arginine transport and nitric oxide production by vascular smooth muscle and endothelium. Circulation Research 78:1075–1082

    Google Scholar 

  • Edmondson RP, Hilton PJ, Jones NF, Patrick J, Thomas RD (1975) Leukocyte sodium transport in uraemia. Clin Sci Mol Med 49:213–216

    Google Scholar 

  • Ellory JC (1987) Amino acid transport systems in mammalian cells. In: Yudilevich DL, Boyd CAR (eds) Amino acid transport in animal cells. Manchester University Press, Manchester, pp 106–119

    Google Scholar 

  • El Nahas AM, Winearls CG (1996) Chronic renal failure and its treatment. In: Weatherall DJ, Ledingham JGG, Warrel DA (eds) Oxford textbook of medicine, 3rd edn. Oxford University Press, Oxford, pp 3294–3306

    Google Scholar 

  • Featherson WR, Rogers QR, Freeland RA (1973) Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol 224:127–129

    Google Scholar 

  • Feng Q, Lu X, Fortin AJ, Pettersson A, Hedner T, Kline RL, Arnold JM (1998) Elevation of an endogenous inhibitor of nitric oxide synthesis in experimental congestive heart failure. Cardiovasc Res 37:667–675

    Google Scholar 

  • Fervenza FC, Harvey CM, Hendry BM, Ellory JC (1989) Increased lysine transport capacity in erythrocytes from patients with chronic renal failure. Clin Sci 76:419–422

    Google Scholar 

  • Fervenza FC, Harvey CM, Hendry BM (1990) A study of erythrocyte amino acid transport in patients with chronic renal failure. Nephrol. Dial Transplant 5:594–599

    Google Scholar 

  • Fleming I, Bauersachs J, Busse R (1997) Calcium-dependent and independent activation of the endothelial cells. J Vasc Res 34:165–174

    Google Scholar 

  • Flores C, Aguayo C, Parodi J, Sugden D, Mann GE, Pearson JD, Sobrevia L (2001) Elevated D-glucose induces expression of the cationic amino acid transport system y+/CAT-2B and endothelial nitric oxide synthase in human endothelial cells. J Physiol 533P:82P

    Google Scholar 

  • Franscis GS (1998) Pathophysiology of the heart failure clinical syndrome. In: Topol EJ (ed) Textbook of cardiovascular medicine. Lipincott-Raven, Philadelphia, pp 2179–2202

    Google Scholar 

  • Fraser CL, Sarnacki AP, Arieff AI (1985) Abnormal sodium transport in synaptosomes from brain of uraemic rats. J Clin Invest 75:2014–2023

    Google Scholar 

  • Fujita H, Tomiyama J, Kudo H, Morita I, Murota S (2000) Sera from patients with sepsis induce nitric oxide production in vascular smooth muscle cells. Mediators Inflamm 9:285–287

    Google Scholar 

  • Gladwin MT, Schechter AN (2001) Nitric oxide theraoy in sickle cell disease. Semin Hematol 38:333–342

    Google Scholar 

  • Girelli D, Azzini M, Olivieri O, Guarini P, Trevisan MT, Lupo A, Bernich P, Panzetta G, Corrocher (1992) Red blood cells and platelet membrane fatty acids in non-dyalized and dyalised uremics. Clin Chim Acta 211:155–166

    Google Scholar 

  • Grill V, Bjorkman O, Gutniak M, Lindquist M (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of gluta-mine release for nitrogen balance. Metabolism 4:28–32

    Google Scholar 

  • Hagenfeldt L, Dahlquist G, Persson B (1989) Plasma amino acids in relation to metabolic control in insulin-dependent diabetic children. Acta Pediatr Scand 794:278–282

    Google Scholar 

  • Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, Schuler G (2000) Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral L-arginine. J Am Coll Cardiol 35:706–713

    Google Scholar 

  • Hand MF, Haynes WG, Webb DJ (1998) Hemodialysis and L-arginine, but not D-arginine, correct renal failure-associated endothelial dysfunction. Kidney Int 53:1068–1077

    Google Scholar 

  • Hanssen H, Brunini TMC, Conway M, Roberts NB, Mann GE, Mendes Ribeiro AC (1998) Activation of L-argnine transport in human red blood cells in chronic heart failure. Clinical Science 94:43–48

    Google Scholar 

  • Hendry BM (1992) Membrane transport in uraemia. In: AEG Raine (ed) Advanced renal medicine. Oxford University Press, Oxford, pp 16–23

    Google Scholar 

  • Herbelin A, Nguyen AT, Zingraff J, Urena P, Descamps-Latscha B (1990) Influence of uraemia and hemodialysis on circulating interleukin-1 and tumor necrosis factor. Kidney Int 37:116–125

    Google Scholar 

  • Hillman RS, Finch CA (1996) General charactheristics of the erythron. In: Hillman RS, Finch CA (eds) Red cell manual. Davis Company, Philadelphia, pp 15–17

    Google Scholar 

  • Hornig B, Arakawa N, Kohler C, Drexler H (1998) Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 97:363–368

    Google Scholar 

  • Houghton AR, Harrison M, Perry AJ, Evans AJ, Cowley AJ (1998) Endogenous insulin and insulin sensitivity. An important determinant of skeletal muscle blood flow in chronic heart failure? Eur Heart J 19:476–480

    Google Scholar 

  • Hyatt SL, Aulak KS, Malandro M, Kilberg MS, Hatzoglou M (1997) Adaptive regulation of the cationic amino acid transporter-1 (CAT-1) in Fao cells. J Biol Chem 272:19951–19957

    Google Scholar 

  • Jaimes EA, Del Castillo D, Rutherford MS, Raij L (2001) Countervailing influence of tumor necrosis factor alpha and nitric oxide in endotoxemia. J Am Soc Nephrol 12:1204–1210

    Google Scholar 

  • Jain SK (1989) Hyperglycaemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 264:21340–21345

    Google Scholar 

  • Javeshghani D, Magder S (2001) Regional changes in constitutive nitric oxide synthase and hemodynamic consequences of its inhibition in lipopolysacharide-treated pigs. Shock 16:232–238

    Google Scholar 

  • Jubelin BC, Gierman JL (1996) Erythrocytes may synthesize their own nitric oxide. Am J Hypertens 12:1214–1219

    Google Scholar 

  • Kari JA, Donald AE, Vallance DT, Bruckdorfer KR, Leone A, Mullen MJ, Bunce T, Dorado B, Deanfield JE, Rees L (1997) Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney Int 52:468–472

    Google Scholar 

  • Kaiser L, Spickard RC, Olivier NB (1989) Heart failure depresses endothelium-dependent response in canine femoral artery. Am J Physiol 256:H962–H967

    Google Scholar 

  • Katz SD (1997) Mechanisms and implications of endothelial dysfunction in congestive heart failure. Curr Opin Cardiol 12:259–264

    Google Scholar 

  • Katz SD, Khan T, Zeballos GA, Mathew L, Potharlanka P, Knecht M, Whelan J (1999) Decreased activity of L-arginine-nitric oxide metabolic pathway in patients with congestive heart failure. Circulation 27:2113–2117

    Google Scholar 

  • Kaye DM, Ahlers BA, Autelitano DJ, Chin-Dusting P (2000) In vivo and in vitro evidence for impaired arginine transport in human heart failure. Circulation 102:2707–2712

    Google Scholar 

  • Kielstein JT, Boger RH, Bode-Boger SM, Schaffer J, Barbey M, Koch KM, Frolich JC (1999) Assymetric dimethylarginine concentrations differ in patients with end-stage renal disease: relantionship to treatment method and atherosclerotic disease. J Am Soc Nephrol 10:594–600

    Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258

    Google Scholar 

  • Kobayashi T, Kamata K (2001) Effect of chronic insulin treatment on NO production and endothelium-dependent relaxation in aortae from established STZ-induced diabetic rats. Atherosclerosis 155:313–320

    Google Scholar 

  • Koifman B, Wollman Y, Bogomolny N, Chernichowsky T, Finkelstein A, Peer G, Scherez J, Blum M, Laniado S, Iaina A (1995) Improvement of cardiac performance by intravenous infusion of L-arginine in patients with moderate congestive heart failure. J Am Coll Cardiol 26:1251–12566

    Google Scholar 

  • Kosaka H, Tanaka S, Yoshii T, Kumura E, Seiyama A, Shiga T (1994) Direct proof of nitric oxide formation from a nitrovasodilator metabolised by erythrocytes. Biochem Biophys Res Commun 204:1055–1060

    Google Scholar 

  • Levillain O, Hus-Citharel A, Morel F, Bankir L (1990) Localization of L-arginine synthesis along rat nephron. Am J Physiol 259:F916–F923

    Google Scholar 

  • Lopez-Virella MF, Virella G (1996) Cytokines, modified lipoproteins and atherosclerosis in diabetes. Diabetes 45:40–44

    Google Scholar 

  • Low BC, Grigor MR (1995) Angiotensin II stimulates system y+and cationic amino acid transporter gene expression in cultured vascular smooth muscle cells. J Biol Chem 270:27577–27583

    Google Scholar 

  • Macallister RJ, Vallance P (1998) Endogenous inhibitors of nitric oxide synthesis: How important are they? Exp Nephrol 6:195–199

    Google Scholar 

  • Maejima K, Nakano S, Himeno M, Tsuda S, Makiishi H, Ito T, Nakagawa A, Kigoshi T, Ishibashi T, Nishio M, Uchida K (2001) Increased basal levels of plasma nitric oxide in Type II diabetic subjects. Relashionship to microvascular complications. J Diabetes Complications 15:135–143

    Google Scholar 

  • May RC, Clark AC, Goheer MA, Mitch WE (1985) Specific defects in insulin-mediated muscle metabolism in acute uremia. Kidney Int 28:490–497

    Google Scholar 

  • Mendes Ribeiro AC, Roberts NB, Lane C, Yaqoob M, Ellory JC (1996) Accumulation of the endogenous analogue NG-monomethyl-L-arginine in human end-stage renal failure patients on regular haemodialysis. Exp Physiol 81:475–481

    Google Scholar 

  • Mendes Ribeiro AC, Hanssen H, Kiessling K, Roberts NB, Mann GE, Ellory JC (1997a) Transport of L-arginine and the nitric oxide inhibitor NG-Monomethyl-L-arginine in human erythrocytes in chronic renal failure. Clin Sci 93:57–64

    Google Scholar 

  • Mendes Ribeiro AC, Hanssen H, Young JD, Mann GE, Ellory JC (1997b) Transport of L-arginine in red blood cells from septic patients. Int J Microcirc Clin Exp 17:214P

    Google Scholar 

  • Mendes Ribeiro AC, Brunini TMC, Yaqoob M, Ellory JC, Mann GE (1998) Peripheral mononuclear cells from uraemic patients exhibit an increased transport of L-arginine via system y+ (CAT-1): implications for nitric oxide synthesis. J Physiol 506P:30P

    Google Scholar 

  • Mendes Ribeiro AC, Brunini TMC, Yaqoob M, Aronson JK, Ellory JC, Mann GE (1999) Identification of system y+L as the high affinity transporter for L-arginine in human platelets: up-regulation of L-arginine influx. Eur J Physiol 438:573–575

    Google Scholar 

  • Mendes Ribeiro AC, Brunini TMC, Ellory JC, Mann GE (2001) Abnormalities in L-arginine transport and nitric oxide biossynthesis in chronic renal and heart failure. Car-diovasc Res 49:697–712

    Google Scholar 

  • Morris CR, Kuypers FA, Larkin S, Sweeters N, Simon J, Vichinsky EP, Styles LA (2000a) Arginine therapy: a novel strategy to induce nitric oxide production in sickle cell disease. Br J Haematol 111: 498–500

    Google Scholar 

  • Morris CR, Kuypers FA, Larkin S, Vichinsky EP, Styles LA (2000b) Patterns of arginine and nitric oxide in patients with sickle cell disease with vaso-occlusive crisis and acute chest syndrome. J Paediatr Hematol Oncol 22:515–520

    Google Scholar 

  • Munoz M, Sweiry JH, Mann GE (1995) Insulin stimulates cationic amino acid transport activity in the isolated perfused rat pancreas. Exp Physiol 80:745–753

    Google Scholar 

  • Najeminik C, Sinzinger H, Kritz H (1999) Endothelial dysfunction, atherosclerosis and diabetes. Acta Med Austriaca 26:148–153

    Google Scholar 

  • Niihara Y, Zerez CR, Akiyama DS, Tanaka KR (1997) Increased red cell glutamine availability in sickle cell anemia: demonstration of increased active transport, affinity, and increased glutamate level in intact red cells. J Lab Clin Med 130:83–90

    Google Scholar 

  • Packer M (1992) Pathophysiology of chronic heart failure. Lancet 340:88–92

    Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    Google Scholar 

  • Panasenko OM, Shalina RI, Azizova OA (1985) Structural changes in erythrocyte membranes in nephropathy. Biull Eksp Biol Med 99:434–437

    Google Scholar 

  • Pawloski JR, Swaminathan RV, Stamler JS (1998) Cell-free and erythrocytic S-nitrosohemoglobin inhibits human platelet aggregation. Circulation 97:263–267

    Google Scholar 

  • Pereira BJ, Shapiro L, King AJ, Falagas ME, Strom JA, Dinarello CA (1994) Plasma levels of IL-1 beta, TNF alpha and their specific inhibitors in undialysed chronic renal failure, CAPD and hemodialysis patients. Kiney Int 45:890–896

    Google Scholar 

  • Pielichowski J, Kwiatkowska J, Zatonski W (1977) Erythrocyte lipids in chronic renal failure. Arch Immunol Ther Exp 25:213–217

    Google Scholar 

  • Pinsky MR (2001) Sepsis: a pro- and anti-inflamatory disequilibrium syndrome. Contrib Nephrol 132: 354–366

    Google Scholar 

  • Praiser JC, Zhang H, Vray B, Hrabak A, Vincent JL (2001) Time course of inducible nitric oxide synthase activity following endotoxin adiministraion in dogs. Nitric Oxide 5:208–211

    Google Scholar 

  • Reade MC, Young JD, Boyd CAR (2001) Cationic amino acid transporter mRNA levels in peripheral blood mononuclear cells from patients with septic shock. J Physiol 535P:46P

    Google Scholar 

  • Remuzzi G, Rossi EC (1996) Hematologic consequences of renal failure. In: Brenner BM (ed) The kidney. WB Saunders, Philadelphia, pp 2170–2186

    Google Scholar 

  • Reyes AA, Karl I, Klahr S (1994) Role of L-arginine in health and in renal disease. Am J Physiol 267:F331–F346

    Google Scholar 

  • Riesler P (1962) The kinetics of valine transport in the human erythrocyte. Expl Cell Res 27:577–580

    Google Scholar 

  • Schmidt RJ, Domico J, Samsell LS, Yokota S, Tracy TS, Sorkin MI, Engels K, Baylis C (1999) Indices of activity of nitric oxide system in hemodialysis patients. Am J Kidney Dis 34:228–234

    Google Scholar 

  • Shibazaki T, Fujiwara M, Sato H, Fujiwara K, Abe K, Bannai S (1996) Relevance of the L-arginine transport activity to the nitric oxide synthesis in mouse peritoneal macrophages stimulated with bacterial lipopolysaccharide. Biochim Biophys Acta 1311:150–154

    Google Scholar 

  • Simmons WW, Closs EI, Cunningham JM, Smith TW, Kelly RA (1996) Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. J Biol Chem 271:11694–11702

    Google Scholar 

  • Smith CJ, Sun D, Hoegler C, Zhang X, Zhao G, Xu XB, Kobari Y, Pritchard K, Sessa WC, Hintze TH (1996) Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 78:58–64

    Google Scholar 

  • Smulders RA, Stehouwer CDA, Olthof CG, Van Kamp GJ, Teerlink T, De Vries PM, Donker AJ (1994) Plasma endothelin levels and vascular efects of intravenous L-arginine infusion in subjects with uncomplicated insulin-dependent diabetes mellits. Clin Sci 87:37–43

    Google Scholar 

  • Sobrevia L, Mann GE (1997) Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp Physiol 82:423–452

    Google Scholar 

  • Sobrevia L, Cesare P, Yudilevich DL, Mann GE (1995) Diabetes-induced activation of system y+ and nitric oxide synthase in human endothelial cells: association with membrane hyperpolarization. J Physiol 489:183–192

    Google Scholar 

  • Sobrevia L, Nadal A, Yudilevich DL, Mann GE (1996) Activation of L-arginine transport (system y+) and nitric oxide synthase by elevated D-glucose and insulin in human endothelial cells. J Physiol 490:775–781

    Google Scholar 

  • Space SL, Lane PA, Pickett CK, Weil JV (2000) Nitric oxide attenuates normal and sickle red blood cells adherence to pulmonary endothelium. Am J Hematol 63:200–204

    Google Scholar 

  • Stathopulos PB, Lu X, Shen J, Scott JA, Hammond JR, McCormack DG, Arnold JM, Feng Q (2001) Increased L-arginine uptake and inducible nitric oxide synthase activity in aortas of rats with heart failure. Am J Physiol 280:H859–H867

    Google Scholar 

  • Steinberg MH, Rodgers GP (2001) Pathophysiology of sickle cell disease: role of cellular and genetic modifers. Semin Hematol 38:299–306

    Google Scholar 

  • Stout RW (1987) The endothelial cell in diabetes. Front Diabetes 8:116–124

    Google Scholar 

  • Sullivan MJ, Hawthorne MH (1997) Nonpharmacologic intervention In: Poole-Wilson PAP, Colluci WS, Massie BM, Chatterjee K, Coats AJS (eds) The heart failure. Church Livingstone, New York, pp 617–633

    Google Scholar 

  • Swales JD (1988) Blood pressure: from cells to populations. J Royal Coll Physicians 22:11–15

    Google Scholar 

  • Swan JW, Walton C, Godsland IF, Clark AL, Coats AJ, Oliver MF (1994) Insulin resistance in chronic heart failure. Eur Heart J 15:1528–1532

    Google Scholar 

  • Tattersall J, Farrington K, Greenwood R (1998) Adequacy of dialysis. In: Davison AM, Cameron JS, Grunfeld JP, Kerr DNS, Ritz E, Winearls CG (eds) Oxford textbook of clinical nephrology. Oxford University Press, Oxford, pp 2075–2088

    Google Scholar 

  • Torrents D, Estevez R, Pineda M, Fernandez EL, Lloberas J, Shi YB, Zorzano A, Palancin M (1998) Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem 273:32437–32445

    Google Scholar 

  • Tunnicliff G (1994) Amino acid transport by human erythrocyte. Comp Biochem Physiol 108:471–478

    Google Scholar 

  • Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T (1998) Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure. Life Sci 62:2425–2430

    Google Scholar 

  • Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Google Scholar 

  • Vanholder R (1998) The uraemic syndrome. In: Greenberg A (ed) Primer on kidney diseases. Academic Press, San Diego, pp 403–407

    Google Scholar 

  • Vanhoutte PM, Shimokawa H (1989) Endothelium-derived relaxing factor and coronary vasoespasm. Circulation 80:87–98

    Google Scholar 

  • Warnock DG (1996) Chronic renal failure. In: Benett CJ, Blum F (eds) Cecil textbook of medicine, 20th edn. WB Saunders, Baltimore, pp 556–576

    Google Scholar 

  • Welt LG, Sachs JR, Mcmanus TJ (1964) An ion transport defect from uremic patients. Trans Assoc Am Physiol 77:169–181

    Google Scholar 

  • Westman J, George S, Scheel PJ Jr, McMurray SD, Pulliam J (1996) Options for dialysis providers in a global capitated environment. Nephrol News Issues 10:26–31

    Google Scholar 

  • Winter CG, Christensen H (1964) Migration of amino acids across the membrane of the human erythrocyte. J Biol Chem 239:872–878

    Google Scholar 

  • Winlaw DS, Smythe GA, Keogh AM, Schyvens CG, Spratt PM, Macdonald PS (1994) Increased nitric oxide production in heart failure. Lancet 44:373–374

    Google Scholar 

  • Yorek MA, Strom DK, Spector AA (1984) Effect of membrane polyunsaturation on carrier-mediated transport in cultured retinoblastoma cells: alterations in taurine uptake. J Neurochem 42:254–261

    Google Scholar 

  • Yoshizumi M, Perrella MA, Burnett JC Jr, Lee ME (1993) Tumor necrosis factor down-regulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circulation Research 73:205–209

    Google Scholar 

  • Young JD, Ellory JC, Tucker EM (1975) Amino acid transport defect in gluthatione-deficient sheep erythrocytes. Nature 254:156–157

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribeiro, A.C.M., Brunini, T.M.C. (2003). Amino Acid Transport in Disease. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics