Skip to main content

Abstract

The human red blood cell (RBC) is a simplified cell extremely well-fitted to comply with its functions. During its life span of 120 ± 4 days, 120 miles of travel and 1.7–105 circulatory cycles the RBC encounters and successfully copes with a number of perilous situations, of external and internal origin. Externally, shear stress, turbulence, and passage across narrow capillaries and splenic slits are met by a resilient, mechanically rugged yet flexible and highly deformable membrane envelope and underlying cytoskeleton. The external cell surface is non-immunogenic and non-adhesive, to avoid adhesion to endothelia and escape close checks by spleen, liver and bone marrow macrophages, ready to phagocytose any cell showing even subtle membrane alterations. Internally, the potentially dangerous high concentration of oxygen and the continuous formation of oxidant species during the oxygenation-deoxygenation cycles of haemoglobin (Hb) are counteracted by powerful metabolic systems of detoxication and protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arese P, De Flora A (1990) Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 27:1–40

    Google Scholar 

  • Arese P, Bosia A, Naitana A, Gaetani S, Pescarmona GP (1981) Effect of divicine and isouramil on red cell metabolism in normal and G6PD-deficient (Mediterranean variant) subjects. Possible role in the genesis of favism. In: Brewer G (ed) The red cell, 5th Ann Arbor conference. Alan R Liss, New York, pp 725–744

    Google Scholar 

  • Arese P, Mannu FR, Megow D, Turrini F (1992) Band 3 and erythrocyte removal. In: Bamberg E, Passow H (eds) Progress in cell research, vol 2. Elsevier, Amsterdam, pp 229–238

    Google Scholar 

  • Beutler E (1990) The genetics of glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 27:137–164

    Google Scholar 

  • Beutler E (1992) The molecular biology of G6PD variants and other red cell enzyme defects. Annu Rev Med 43:47–59

    Article  Google Scholar 

  • Beutler E (2001a) Composition of the erythrocyte. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, Seligsohn U (eds) Williams hematology, 6th edn. McGraw-Hill, New York, pp 289–293

    Google Scholar 

  • Beutler E (2001b) Energy metabolism and maintenance of erythrocytes. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, Seligsohn U (eds) Williams hematology, 6th edn. McGraw-Hill, New York, pp 319–332

    Google Scholar 

  • Beutler E (2001c) Glucose-6-phosphate dehydrogenase deficiency and other red cell enzyme abnormalities. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, Seligsohn U (eds) Williams hematology, 6th edn. McGraw-Hill, New York, pp 527–545

    Google Scholar 

  • Carrell RW, Winterbourn CC, Rachmilewitz EA (1975) Activated oxygen and haemolysis. Br J Haematol 30:259–264

    Article  Google Scholar 

  • Chappey O, Dosquet C, Wautier M-P, Wautier J-L (1997) Advanced glycation end products, oxidant stress and vascular lesions. Eur J Clin Invest 27:97–108

    Article  Google Scholar 

  • Chiu D, Lubin B (1989) Oxidative hemoglobin denaturation in RBC destruction: The effect of hemin on red cell membranes. Semin Hematol 26:128–135

    Google Scholar 

  • Chiu D, Kuypers F, Lubin B (1989) Lipid peroxidation in human red cells. Semin Hematol 26:257–276

    Google Scholar 

  • Closse C, Dachary-Prigent J, Boisseau MR (1999) Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 107:300–302

    Article  Google Scholar 

  • De Flora A, Benatti U, Guida L, Forteleoni G, Meloni T (1985) Favism: Disordered erythrocyte calcium homeostasis. Blood 66:294–297

    Google Scholar 

  • De Mattia G, Laurenti O, Bravi C, Ghiselli A, Iuliano L, Balsano F (1994) Effect of aldose reductase inhibition on glutathione redox status in erythrocytes of diabetic patients. Metabolism 43:965–968

    Article  Google Scholar 

  • Fischer TM, Meloni T, Pescarmona GP, Arese P (1985) Membrane cross bonding in red cells in favic crisis. Br J Haematol 59:159–169

    Article  Google Scholar 

  • Fujita T, Suzuki K Tada T, Yoshihara Y, Hamaoka R, Taniguchi N (1998) Human erythrocyte bisphosphoglycerate mutase: inactivation by glycation in vivo and in vitro. J Bio-chem 124:1237–1244

    Google Scholar 

  • Gaetani GD, Parker JC, Kirkman HN (1974) Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci USA 71:3584–3587

    Article  ADS  Google Scholar 

  • Gaetani GF, Ferraris AM, Rolfo M, Mangerini R, Arena S, Kirkman HN (1996) Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 87:1595–1599

    Google Scholar 

  • Garby L, Noyes WD (1959) Studies on hemoglobin metabolism. I. The kinetic properties of the plasma hemoglobin pool in normal man. J Clin Invest 38:1479–1483

    Article  Google Scholar 

  • Grimes AJ (1980) Human red cell metabolism. Blackwell Sci Pub, Oxford

    Google Scholar 

  • Hebbel RP, Eaton JW, Balasingam A, Steinberg MH (1982) Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 70:1253–1259

    Article  Google Scholar 

  • Hebbel RP (1985) Auto-oxidation and a membrane-associated “Fenton reagent”: A possible explanation for development of membrane lesions in sickle erythrocytes. Clinics in Haematol 14:129–140

    Google Scholar 

  • Hicks M, Delbridge L, Yue DK, Reeve TS (1988) Catalysis of lipid peroxidation by glucose and glycosylated collagen. Biochem Biophys Res Commun 151:649–655

    Article  Google Scholar 

  • Higgins PJ, Bunn HF (1981) Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J Biol Chem 256:5204–5208

    Google Scholar 

  • Hunt JV, Dean RT, Wolff SP (1988) Hydroxyl radical production and autoxidative glycosylation: glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256:205–212

    Google Scholar 

  • Jacobasch G (2000) Biochemical and genetic basis of red cell enzyme deficiencies. Bail-liére’s Clin Haematol 13:1–20

    Google Scholar 

  • Jones RL, Peterson CM (1981) Hematologic alterations in diabetes mellitus. Am J Med 70:339–352

    Article  Google Scholar 

  • Kay MMB, Bosman GJCG, Johnson GJ, Beth AH (1988) Band-3 polymers and aggregates, and hemoglobin precipitates in red cell aging. Blood Cells 14:275–289

    Google Scholar 

  • Kiefer CR, Snyder LM (2000) Oxidation and erythrocyte senescence. Curr Opin Hematol 7:113–116

    Article  Google Scholar 

  • King GL, Shiba T, Oliver J, Inoguchi Y, Bursell SE (1994) Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu Rev Med 45:179–188

    Article  Google Scholar 

  • Kirkman HN, Gaetani GF (1986) Regulation of glucose-6-phosphate dehydrogenase in human erythrocytes. J Biol Chem 261:4033–4038

    Google Scholar 

  • Kirkman HN, Galiano S, Gaetani GF (1987) The function of catalase-bound NADPH. J Biol Chem 262:660–666

    Google Scholar 

  • Kuypers FA (1998) Phospholipid asymmetry in health and disease. Curr Opin Hematol 5:122–131

    Article  Google Scholar 

  • Kuypers FA, Yuan J, Snyder LM, Kiefer CR, Bunyaratvej A, Fucharoen S, Ma L, Styles L, De Jong K, Schrier SL (1998) Membrane phospholipid asymmetry in human thalassemia. Blood 91:3044–3051

    Google Scholar 

  • Liu SC, Yi SJ, Mehta JR, Nichols PE, Ballas SK, Yacono PW, Golan DE, Palek J (1996) Red cell membrane remodeling in sickle cell anemia: sequestration of membrane lipids and proteins in Heinz bodies. J Clin Invest 97:29–36

    Article  Google Scholar 

  • Low PS (1986) Structure and function of the cytoplasmic domain of band 3: Center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta 864:145–167

    Article  Google Scholar 

  • Lutz HU (1990) Erythrocyte clearance. In: Harris JR (ed) Blood cell biochemistry, vol 1. Erythroid cells. Plenum Press, New York, pp 81–120

    Google Scholar 

  • Luzzatto L, Mehta A (1995) Glucose-6-phosphate dehydrogenase deficiency. In: Scriver RC, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 3, 7th edn. McGraw-Hill, New York, pp 3367–3398

    Google Scholar 

  • Mager J, Chevion M, Glaser G (1980) Favism. In: Liener IE (ed) Toxic constituents of plant foodstuffs, 2nd edn. Academic Press, San Diego, pp 265–294

    Google Scholar 

  • Mason PJ (1996) New insights into G6PD deficiency. Brit J Haematol 94:585–591

    Google Scholar 

  • McMillan DE, Utterback NG (1981) Impaired flow properties of diabetic erythrocytes. Clin Hemorheol 1:147–152

    Google Scholar 

  • Mehta A, Mason PJ, Vulliamy TJ (2000) Glucose-6-phosphate dehydrogenase deficiency. Bailliére’s Clin Haematol 13:21–38

    Google Scholar 

  • Mohandas N, Morrow JS (2000) Plasma membrane dynamics and organization. In: Hoffman R, Benz EJ Jr, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P (eds) Hematology. Basic principles and practice. Churchill Livingstone, New York, pp 40–48

    Google Scholar 

  • Njoroge FG, Monnier VM (1989) The chemistry of the Maillard reaction under physiological conditions: a review. Progr Clin Biol Res 304:85–107

    Google Scholar 

  • Oberley LW (1988) Free radicals and diabetes. Free Radic Biol Med 5:113–124

    Article  Google Scholar 

  • Pescarmona GP, Bosia A, Ghigo D (1982) Shortened red cell life span in diabetes: mechanisms of hemolysis. In: Weatherall DJ, Fiorelli G, Gorini G (eds) Advances in red cell biology. Raven Press, New York, pp 391–396

    Google Scholar 

  • Rajeswari P, Natarajan R, Nadler JL, Kumar D, Kaira VK (1992) Glucose induces lipid peroxidation and inactivation of membrane-associated ion-transport enzymes in human erythrocytes in vivo and in vitro. J Cell Physiol 149:100–109

    Article  Google Scholar 

  • Repka T, Shalev O, Reddy R, Yuan J, Abrahamov A, Rachmilewitz EA, Low PS, Hebbel RP (1993) Nonrandom association of free iron with membranes of sickle and beta-thalassemia erythrocytes. Blood 82:3204–3210

    Google Scholar 

  • Rettig MP, Low PS, Gimm JA, Wang J, Christian JA (1999) Evaluation of biochemical changes during in vivo erythrocyte senescence in the dog. Blood 93:376–384

    Google Scholar 

  • Rice-Evans C, Baysal E (1987) Iron-mediated oxidative stress in erythrocytes. Biochem J 244:191–196

    Google Scholar 

  • Romero PJ, Romero EA (1999) The role of calcium metabolism in human red blood cell ageing: A proposal. Blood Cells Molec Dis 25:9–19

    Article  Google Scholar 

  • Sansone G, Piga AM, Segni G (1958) Il Favismo. Minerva Medica Editrice, Torino

    Google Scholar 

  • Schmidt AM, Yan SD, Yan SF, Stern DM (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498:99–111

    Article  Google Scholar 

  • Schwartz RS, Madsen JW, Rybicki AC, Nagel RL (1991) Oxidation of spectrin and de-formability defects in diabetic erythrocytes. Diabetes 40:710–708

    Article  Google Scholar 

  • Shinar E, Rachmilewitz EA (1993) Haemoglobinopathies and red cell membrane function. Baillière’s Clin Haematol 6:357–369

    Article  Google Scholar 

  • Stern A (1989) Drug-induced oxidative denaturation in red blood cells. Semin Hematol 26:301–306

    Google Scholar 

  • Turrini F, Naitana A, Mannuzzu L, Pescarmona GP, Arese P (1985) Increased red cell calcium, decreased calcium extrusion and altered membrane proteins during fava bean hemolysis in G6PD-deficient (Mediterranean variant) individuals. Blood 66:302–305

    Google Scholar 

  • Turrini F, Mannu F, Giribaldi G, Arese P (1997) Biochemistry of favism. In: Greene LS, Danubio ME (eds) Adaptation to malaria. The interaction of biology and culture. Gordon and Breach Publishers, Cambridge, pp 33–56

    Google Scholar 

  • Vlassara H (1994) Recent progress on the biologic and clinical significance of advanced glycation end products. J Lab Clin Med 124:19–30

    Google Scholar 

  • Vlassara H, Valinsky J, Brownlee M, Cerami C, Nishimoto S, Cerami A (1987) Advanced glycosylation endoproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. J Exp Med 166:539–549

    Article  Google Scholar 

  • Vulliamy T, Mason P, Luzzatto L (1992) The molecular basis of glucose-6-phosphate dehydrogenase deficiency. Trends Genet 8:138–143

    Google Scholar 

  • Waugh SM, Walder JA, Low PS (1987) Partial characterization of the copolymerization reaction of erythrocyte membrane band 3 with hemichrome. Biochemistry 26:1777–1783

    Article  Google Scholar 

  • Weatherall DJ (1996) Host genetics and infectious diseases. Parasitology 112:S23–S29

    Google Scholar 

  • Weatherall DJ (2001) The thalassemias. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, Seligsohn U (eds) Williams hematology, 6th edn. McGraw-Hill, New York, pp 547–580

    Google Scholar 

  • Winterbourn CC (1990) Oxidative denaturation in congenital haemolytic anemias: The unstable anemias. Semin Hematol 27:41–50

    Google Scholar 

  • Yoshida A (1973) Hemolytic anemia and G6PD deficiency. Science 179:532–537

    Article  ADS  Google Scholar 

  • Yoshida K, Hirokawa J, Tagami S, Kawakami Y, Urata Y, Kondo T (1995) Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia 38:201–210

    Article  Google Scholar 

  • Zhang D, Kiyatkin A, Bolin JT, Low PS (2000) Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 96:2925–2933

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arese, P., Schwarzer, E. (2003). Metabolic Disorders. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics