Skip to main content
  • 342 Accesses

Abstract

The plasma membrane of animal cells constitutes a selectively permeable barrier, the properties of which determine intracellular solute composition (e.g., Stein 1990). Characterising these properties has been a longstanding objective of biologists, and it is now recognised that a large array of membrane proteins regulates the exchange of ions and solutes between the cell and its extracellular environment. The passage of water across the lipid bilayer can also occur and, as the chief solvent for body fluids, this movement is axiomatic to life. The characterisation of water movement across cell membranes has relied heavily on the use of the erythrocyte as a paradigm (e.g., Rich et al. 1967). We now know that the swelling and subsequent haemolysis observed when erythrocytes are suspended in hypotonic media predominantly reflects diffusion of water through protein channels, termed aquaporins. In this chapter, we will consider the evidence that supports this assertion, and review the structure and function of the aquaporin family. The importance of aquaporin expression for erythrocyte function will also be discussed, both in terms of its conventional role, and, in the light of recent evidence, as a channel which can facilitate gas carriage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channels. Am J Physiol 265:F461

    Google Scholar 

  • Berry CA (1985) Characteristics of water diffusion in the rabbit proximal convoluted tubule. Am J Physiol 249:F729–F738

    Google Scholar 

  • Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aqua-porin water channels. Annu Rev Biochem 68:425–458

    Article  Google Scholar 

  • Brahm J (1982) Diffusional water permeability of human erythrocytes and their ghosts. J Gen Physiol 79:791–819

    Article  Google Scholar 

  • Cass A, Finkelstein A (1967) Water permeability of thin lipid membranes. J Gen Physiol 50:1765–1784

    Article  Google Scholar 

  • Cheng A, Van Hoek AN, Yeager M, Verkman AS, Mitra AK (1997) Three-dimensional organization of a human water channel. Nature 387:627–630

    Article  ADS  Google Scholar 

  • Conlon T, Outhred R (1972) Water diffusion permeability of erythrocytes using an NMR technique. Biochem Biophys Acta 288:354–361

    Article  Google Scholar 

  • Cooper GJ, Boron WF (1998) Effect of PCMBS on C02 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Physiol 275:C1481–C1486

    Google Scholar 

  • Daniels G (1999) Functional aspects of red cell antigens. Blood Rev 13:14–35

    Article  Google Scholar 

  • Dempster JA, Van Hoek AN, Van Os VH (1992) The quest for water channels. News Physiol Sci 7:175–176

    Google Scholar 

  • Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterisation of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642

    Google Scholar 

  • Finkelstein A, Cass A (1967) Effect of cholesterol on the water permeability of thin lipid membranes. Nature 216:717–718

    Article  ADS  Google Scholar 

  • Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39:49–59

    Article  Google Scholar 

  • Heymann JB, Engel A (1999) Aquaporins: Phylogeny, structure and physiology of water channels. News Physiol Sci 14:187–194

    Google Scholar 

  • Holz R, Finkelstein A (1970) The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:125–145

    Article  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14684–14654

    Google Scholar 

  • Lahajnar H, Macek P, Zupancic I (2000) Supression of red cell diffusional water permeability by lipophilic solutes. Bioelectrochem 52:179–185

    Article  Google Scholar 

  • Loike J, Cao L, Kuang K, Vera JC, Silverstein SC, Fischbarg J (1993) Role of facultative glucose transporters in diffusional water permeability through J774 cells. J Gen Physiol 102:897–906

    Article  Google Scholar 

  • Macey RI, Farmer RE (1970) Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta 211:104–106

    Article  Google Scholar 

  • Naccache P, Sha’afi RI (1974) Effect of PCMBS on water transfer across biological membranes. J Cell Physiol 83:449–456

    Article  Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the C02 permeability of Xenopus oocytes. Am J Physiol 274:C543–C548

    Google Scholar 

  • Pao GM, Wu LF, Johnson KD, Hofte H, Chrisrppel MJ, Sweet G, Sandal NN, Saier MH (1991) Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol 5:33–37

    Article  Google Scholar 

  • Parisi M, Bourguet J (1983) The single file hypothesis and the water channels induced by antidiuretic hormone. J Membrane Biol 71:189–193

    Article  Google Scholar 

  • Park JH, Saier MH (1996) Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membrane Biol 153:171–180

    Article  Google Scholar 

  • Petersen DC (1980) Water permeation through the lipid bilayer membrane. Test of the liquid hydrocarbon model. Biochem Biophys Acta 600:666–677

    Article  Google Scholar 

  • Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273:33123–33126

    Article  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  ADS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  ADS  Google Scholar 

  • Ramesh Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin-1 water channels transport CO2 across membranes. J Biol Chem 273:33123–33126

    Article  Google Scholar 

  • Rich GT, Sha’afi RI, Barton TC, Solomon AK (1967) Permeability studies on red cell membranes of dog, cat, and beef. J Gen Physiol 50:2391–2405

    Article  Google Scholar 

  • Roudier N, Verbavatz JM, Maurel C, Ripoche P, Tacnet F (1998) Evidence for the presence of aquaporin-3 in human red blood cells. J Biol Chem 273:8407–8412

    Article  Google Scholar 

  • Schreiber R, Greger R, Nitschke R, Kunzelmann K (1997) Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes. Pfliigers Arch 434:841–847

    Article  Google Scholar 

  • Smith BL, Agre P (1991) Erythrocyte Mr 28,000 transmembrane protein exists as a multi-subunit oligomer similar to channel proteins. J Biol Chem 266:6407–6415

    Google Scholar 

  • Smith CP, Rousselet G (2001) Facilitative urea transporters. J Membrane Biol 183:1–14

    Article  Google Scholar 

  • Solomon AK, Chasan B, Dix JA, Lukacovic MF, Toon MR, Verkman AS (1983) The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes and water. Ann New York Acad Sci 414:97–124

    Article  ADS  Google Scholar 

  • Stein WD (1990) Channels, carriers and pumps. Academic Press, San Diego

    Google Scholar 

  • Sterling D, Reithmeier RA, Casey JR (2001) A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276: 47886–47894

    Google Scholar 

  • Sui H, Han B-G, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  ADS  Google Scholar 

  • Terwilliger TC, Solomon AK (1981) Osmotic water permeability of human red cells. J Gen Physiol 77:549–570

    Article  Google Scholar 

  • Träuble H (1971) The movement of molecules across lipid membranes: A molecular theory. J Membrane Biol 4:193–208

    Article  Google Scholar 

  • Van Hoek AN, Horn ML, Luthjens LH, De Jong MD, Dempster JA, Van Os CH (1991) Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J Biol Chem 266:16633–16635

    Google Scholar 

  • Ventura HO, Mehra MR, Young JB (2001) Treatment of heart failure according to William Stokes: the enchanted mercury. J Card Fail 7:277–282

    Article  Google Scholar 

  • Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol 278:F13–F28

    Google Scholar 

  • Walz T, Smith BL, Zeidel ML, Engel A, Agre P (1994) Biologically active two-dimensional crystals of aquaporin CHIP. J Biol Chem 269:1583–1586

    Google Scholar 

  • Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140–16146

    Article  Google Scholar 

  • Yang B, Fukuda N, Van Hoek A, Matthay MA, Ma T, Verkman AS (2000) Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J Biol Chem 275:2686–2692

    Article  Google Scholar 

  • Yang B, Ma T, Verkman AS (2001) Erthythrocyte water permeability and renal function in double knockout mice lacking aquaporin-1 and aquaporin-3. J Biol Chem 276:624–628

    Article  Google Scholar 

  • Zardoya R, Villalba S (2001) A phylogenetic framework for the aquaporin family in eu-karyotes. J Mol Evol 52:391–404

    Google Scholar 

  • Zhang R, Van Hoek AN, Biwersi J, Verkman AS (1993) A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k. Biochemistry 32:2938–2941

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Browning, J., Wilkins, R. (2003). Water Permeability. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics