Skip to main content

Monocarboxylate and other Organic Anion Transport

  • Chapter
Red Cell Membrane Transport in Health and Disease
  • 330 Accesses

Abstract

Organic anions comprise a wide range of compounds including naturally occurring metabolites such as taurine, mono-, di- and tricarboxylates, bile acids and oxidised glutathione, as well as numerous clinically important drugs. However, in purely quantitative terms, by far the most important organic anion is lactate, since this metabolite, or more accurately lactic acid, is the end product of glycolysis which produces two lactic acids for every glucose metabolised. It is clear that some mechanism must enable the efflux of lactic acid from the cell if it is not to accumulate and inhibit glycolytic ATP production, and it is the transporter for lactate and related monocarboxlates that will be the focus of the present chapter. However, red blood cells (RBCs) do possess at least two members of the ATP-dependent multispecific organic-anion transporter family that are capable of transporting glucuronides, mercapturates and oxidised glutathione (Heijn et al. 1992; Saxena and Henderson 1996). The reader is referred elsewhere for a review of this transporter family (Sekine et al. 2000). Organic anions can also be transported by swelling-activated osmolyte channels (see Chap. 7) and anion-like channels activated under conditions of low ionic strength (Culliford et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abumrad N, Harmon C, Ibrahimi A (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 39:2309–2318

    Google Scholar 

  • Anderson BL, Tarpley HL, Regen DM (1978) Characterisation of β-hydroxybutyrate transport in rat erythrocytes and thymocytes. Biochim Biophys Acta 508:525–538

    Article  Google Scholar 

  • Arbuckle MI, Kane S, Porter LM, Seatter MJ, Gould GW (1996) Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: Expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry 35:16519–16527

    Article  Google Scholar 

  • Aubert L, Motais R (1975) Molecular features of organic anion permeabiliity in ox red blood cells. J Physiol 246:159–179

    Google Scholar 

  • Bakker EP, Van Dam K (1974) The movement of monocarboxylic acids across phospholipid membranes: evidence for an exchange diffusion between pyruvate and other monocarboxylate ions. Biochim Biophys Acta 339:285–289

    Article  Google Scholar 

  • Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K (1995) The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55:434–439

    Google Scholar 

  • Bröer S, Rahman B, Pellegri G, Pellerin L, Martin JL, Verleysdonk S, Hamprecht B, Magistretti PJ (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes — Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272:30096–30102

    Article  Google Scholar 

  • Bröer S, Schneider HP, Bröer A, Rahman B, Hamprecht B, Deitmer JW (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 333:167–174

    Google Scholar 

  • Bröer S, Bröer A, Schneider H-P, Stegen C, Halestrap AP, Deitmer JW (1999) Characterisation of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J 341:529–535

    Article  Google Scholar 

  • Bruce LJ, Groves JD, Okubo Y, Thilaganathan B, Tanner MJ (1994) Altered band 3 structure and function in glycophorin A- and B-deficient (MkMk) red blood cells. Blood 84:916–22

    Google Scholar 

  • Carpenter L, Halestrap AP (1994) The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J 304:751–760

    Google Scholar 

  • Carpenter L, Poole RC, Halestrap AP (1996) Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettre tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function. Biochim Biophys Acta 1279:157–163

    Article  Google Scholar 

  • Casal M, Paiva S, Andrade RP, Gancedo C, Leao C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181:2620–2623

    Google Scholar 

  • Cranmer SL, Conant AR, Gutteridge WE, Halestrap AP (1995) Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotrans-porter. J Biol Chem 270:15045–15052

    Article  Google Scholar 

  • Culliford SJ, Bernhardt I, Ellory JC (1995) Activation of a novel organic solute transporter in mammalian red blood cells. J Physiol 489:755–765

    Google Scholar 

  • De Bruijne AW, Vreeberg H, Van Steveninck J (1983) Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. Biochim Biophys Acta 732:562–568

    Article  Google Scholar 

  • De Bruijne AW, Vreeberg H, Van Steveninck J (1985) Alternative substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes. Biochim Biophys Acta 812:841–844

    Article  Google Scholar 

  • Denton RM, Halestrap AP (1979) Regulation of pyruvate metabolism in mammalian tissues. Essays Biochem 15:37–47

    Google Scholar 

  • Deuticke B (1977) Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev Physiol Biochem Pharmacol 78:1–97

    Article  Google Scholar 

  • Deuticke B (1980) Kinetic properties and substrate specificity of the monocarboxy late carrier in the human erythrocyte membrane. In: Lassen UV, Ussing HH, Weith JO (eds) Membrane transport in erythrocytes (Alfred Benzon Symposium 14). Munksgaard, Copenhagen, pp 539–551

    Google Scholar 

  • Deuticke B (1982) Monocarboxylate transport in erythrocytes. J Membrane Biol 70:89–103

    Article  Google Scholar 

  • Deuticke B (1986) The role of membrane sulphydryls in passive, mediated transport processes and for the barrier function of the erythrocyte membrane. Membrane Biochem 6:309–326

    Article  Google Scholar 

  • Deuticke B (1989) Monocarboxylate transport in red blood cells — kinetics and chemical modification. Methods Enzymol 173:300–329

    Article  Google Scholar 

  • Deuticke B, Beyer E, Forst B (1982) Discrimination of three parallel pathways of L-lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties. Biochim Biophys Acta 684:96–110

    Article  Google Scholar 

  • Deuticke B, Rickert I, Beyer E (1978) Stereoselective, SH-dependent transfer of lactate in human erythrocytes. Biochim Biophys Acta 507:137–155

    Article  Google Scholar 

  • Deves R, Krupka RM (1979) A simple experimental approach to the determination of carrier transport parameters for unlabelled substrate analogues. Biochim Biophys Acta 556:524–532

    Article  Google Scholar 

  • Dimmer KS, Friedrich B, Lang F, Deitmer JW, Bröer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350:219–227

    Article  Google Scholar 

  • Donovan JA, Jennings ML (1985) Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid. Biochemistry 24:561–564

    Article  Google Scholar 

  • Donovan JA, Jennings ML (1986) N-Hydroxysulphosuccinimido active esters and the L-(+)-lactate transport protein in rabbit erythrocytes. Biochemistry 25:1538–1545

    Article  Google Scholar 

  • Dubinsky WP, Racker E (1978) The mechanism of lactate transport in human erythrocytes. J Membrane Biol 44:25–36

    Article  Google Scholar 

  • Edlund GL, Halestrap AP (1986) Transport of L-lactate into isolated rat hepatocytes and erythrocytes at low temperatures. Biochem Soc Trans 14:1190–1191

    Google Scholar 

  • Elliott JL, Saliba KJ, Kirk K (2001) Transport of lactate and pyruvate in the intraerythro-cytic malaria parasite, Plasmodium falciparum. Biochem J 355:733–739

    Google Scholar 

  • Fishbein WN (1986) Lactate transporter defect: a new disease of muscle. Science 234:1254–1256

    Article  ADS  Google Scholar 

  • Fossum S, Mallett S, Barclay AN (1991) The MRC OX-47 antigen is a member of the immunoglobulin superfamily with an unusual transmembrane sequence. Eur J Immunol 21:671–679

    Article  Google Scholar 

  • Garcia CK, Brown MS, Pathak RK, Goldstein JL (1995) cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem 270:1843–1849

    Article  Google Scholar 

  • Gould GW, Holman GD (1993) The glucose transporter family — structure, function and tissue-specific expression. Biochem J 295:329–341

    Google Scholar 

  • Green NM (1991) Biological membranes. The semiotics of charge. Nature 351:349–50

    Article  ADS  Google Scholar 

  • Grollman EF, Philp NJ, McPhie P, Ward RD, Sauer B (2000) Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry 39:9351–9357

    Article  Google Scholar 

  • Halestrap AP (1976) Pyruvate and lactate transport into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride independent carrier. Biochem J 156:193–207

    Google Scholar 

  • Halestrap AP, Denton RM (1974) Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by a-cyano-4-hydroxycinnamate. Biochem J 138:313–316

    Google Scholar 

  • Halestrap AP, Poole RC (1989) The transport of pyruvate and lactate across mitochondrial and plasma membranes. In: Hamasaki N, Jennings ML (eds) Anion transport protein of the red blood cell membrane. Elsevier, Amsterdam, pp 73–86

    Google Scholar 

  • Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281–299

    Article  Google Scholar 

  • Halestrap AP, Brand MD, Denton RM (1974) Inhibition of mitochondrial pyruvate transport by phenylpyruvate and a-keto-isocaproate. Biochim Biophys Acta 367:102–108

    Article  Google Scholar 

  • Halestrap AP, Scott RD, Thomas AP (1980) Mitochondrial pyruvate transport and its hormonal regulation. Int J Biochem 11:97–105

    Article  Google Scholar 

  • Hart KW, Clarke AR, Wigley DB, Waldman AD, Chia WN, Barstow DA, Atkinson T, Jones JB, Holbrook JJ (1987) A strong carboxylate-arginine interaction is important in substrate orientation and recognition in lactate dehydrogenase. Biochim Biophys Acta 914:294–298

    Article  Google Scholar 

  • Heijn M, Oude Elferink RP, Jansen PL (1992) ATP-dependent multispecific organic anion transport system in rat erythrocyte membrane vesicles. Am J Physiol 262:C104–C110

    Google Scholar 

  • Henderson PJF (1993) The 12-transmembrane helix transporters. Curr Opin Cell Biol 5:708–721

    Article  Google Scholar 

  • Jackson VN, Price NT, Halestrap AP (1995) cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle. Biochim Biophys Acta 1238:193–196

    Article  Google Scholar 

  • Jackson VN, Price NT, Carpenter L, Halestrap AP (1997) Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem J 324:447–453

    Google Scholar 

  • Jennings ML, Adams-Lackey M (1982) A rabbit erythrocyte membrane protein associated with L-lactate transport. J Biol Chem 257:12866–12871

    Google Scholar 

  • Juel C, Halestrap AP (1999) Lactate transport in skeletal muscle — role and regulation of the monocarboxylate transporter. J Physiol 517:633–642

    Article  Google Scholar 

  • Kafitz KW, Rose CR, Thoenen H, Konnerth A (1999) Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401:918–921

    Article  ADS  Google Scholar 

  • Kanaani J, Ginsburg H (1991) Transport of lactate in Plasmodium-falciparum-infected human erythrocytes. J Cell Physiol 149:469–476

    Article  Google Scholar 

  • Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632

    Article  Google Scholar 

  • Kasinrerk W, Fiebiger E, Stefanova I, Baumruker T, Knapp W, Stockinger H (1992) Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J Immunol 149:847–854

    Google Scholar 

  • Kim CM, Goldstein JL, Brown MS (1992) cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of a point mutation responsible for its gain in function. J Biol Chem 267:23113–23121

    Google Scholar 

  • Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H (2001) Expression cloning of a Na+-Mndependent aromatic amino acid transporter with structural similarity to H+/Monocarboxylate Transporters. J Biol Chem 276:17221–17228

    Article  Google Scholar 

  • Kim-Garcia C, Goldstein JL, Pathak RK, Anderson RGW, Brown MS (1994a) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocar-boxylates — Implications for the Cori cycle. Cell 76:865–873

    Article  Google Scholar 

  • Kim-Garcia C, Li X, Luna J, Francke U (1994b) cDNA cloning of the human monocar-boxylate transporter 1 and chromosomal location of the SLC16A1 locus to 1p13.2-p12. Genomics 23:500–503

    Article  Google Scholar 

  • Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP (2000) CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 19:3896–3904

    Article  Google Scholar 

  • Koehler Stec EM, Simpson IA, Vannucci SJ, Landschulz KT, Landschulz WH (1998) Monocarboxylate transporter expression in mouse brain. Am J Physiol 38:E516–E524

    Google Scholar 

  • Lanier LL, Yu G, Phillips JH (1989) Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 342:803–805

    Article  ADS  Google Scholar 

  • Lanier LL, Corliss B, Wu J, Phillips JH (1998) Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8:693–701

    Article  Google Scholar 

  • Leeks DR, Halestrap AP (1978) Chloride-independent transport of pyruvate and lactate across the erythrocyte membrane. Biochem Soc Trans 6:1363–1366

    Google Scholar 

  • Leeks DR, Halestrap AP (1979) Pyruvate and lactate transport across the cell membrane of the erythrocyte and other cells. In: Quagliariello E, Papa S, Palmieri F, Slater EC, Siliprandi N (eds) Function and molecular aspects of biomembrane transport. Elsevier-North Holland, Amsterdam, pp 427–430

    Google Scholar 

  • Manning Fox JE, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529:285–293

    Article  Google Scholar 

  • Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F (1998a) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395:288–291

    Article  ADS  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calci-tonin-receptor-like receptor. Nature 393:333–339

    Article  ADS  Google Scholar 

  • Meredith D, Halestrap AP (2000) OX47 (basigin) may act as a chaperone for expression of the monocarboxylate transporter MCT1 at the plasma membrane of Xenopus laevis oocytes. J Physiol 526P:23P

    Google Scholar 

  • Meredith D, Roberts M, Halestrap AP (1999) Both K290 and K413 are essential for DIDS covalent modification of the rat proton-linked monocarboxylate (lactate) transporter MCT1 expressed in Xenopus laevis oocytes. J Physiol 517P:25P

    Google Scholar 

  • Miyauchi T, Jima F, Igakura T, Yu S, Ozawa M, Muramatsu T (1995) Struture of the mouse basigin gene, a unique member of the immunoglobulin superfamily. J Biochem (Tokyo) 118:717–724

    Google Scholar 

  • Ozawa M, Huang RP, Furukawa T, Muramatsu T (1988) A teratocarcinoma glycoprotein carrying a developmentally regulated carbohydrate marker is a member of the immunoglobulin gene superfamily. J Biol Chem 263:3059–3062

    Google Scholar 

  • Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M, Williams AF (1987) Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol 24:1281–1290

    Article  Google Scholar 

  • Pfaller MA, Krogstad DJ, Parquette AR, Nguyen-Dinh P (1982) Plasmodium falciparum: Stage specific lactate production in synchronized cultures. Exp Parasitol 54:391–396

    Article  Google Scholar 

  • Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F (1999a) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18:49–57

    Article  Google Scholar 

  • Poole RC, Halestrap AP (1988) Reconstitution of the L-lactate carrier from rat and rabbit erythrocyte plasma membranes. Biochem J 254:385–390

    Google Scholar 

  • Poole RC, Halestrap AP (1990) Inhibition and labelling of the erythrocyte lactate transporter by stilbene disulphonates. Biochem Soc Trans 18:1245–1246

    Google Scholar 

  • Poole RC, Halestrap AP (1991) Reversible and irreversible inhibition, by stilbenedisulpho-nates, of lactate transport into rat erythrocytes — identification of some new high-affinity inhibitors. Biochem J 275:307–312

    Google Scholar 

  • Poole RC, Halestrap AP (1992) Identification and partial purification of the erythrocyte lactate transporter. Biochem J 283:855–862

    Google Scholar 

  • Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264:C761–C782

    Google Scholar 

  • Poole RC, Halestrap AP (1994) N-Terminal protein sequence analysis of the rabbit erythrocyte lactate transporter suggests identity with the cloned monocarboxylate transport protein MCT1. Biochem J 303:755–759

    Google Scholar 

  • Poole RC, Halestrap AP (1997) Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70-kDa membrane glycoprotein of the immunoglobulin superfamily. J Biol Chem 272:14624–14628

    Article  Google Scholar 

  • Poole RC, Cranmer SL, Halestrap AP, Levi AJ (1990) Substrate and inhibitor specificity of monocarboxylate transport into heart cells and erythrocytes — further evidence for the existence of 2 distinct carriers. Biochem J 269:827–829

    Google Scholar 

  • Poole RC, Cranmer SL, Holdup DW, Halestrap AP (1991) Inhibition of L-lactate transport and Band-3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N’,N’-tetrabenzyl-4,4’-diaminostilbene-2,2’-disulphonate (TBenzDS). Biochim Biophys Acta 1070:69–76

    Article  Google Scholar 

  • Poole RC, Sansom CE, Halestrap AP (1996) Studies of the membrane topology of the rat erythrocyte HVlactate cotransporter (MCT1). Biochem J 320:817–824

    Google Scholar 

  • Price NT, Jackson VN, Halestrap AP (1998) Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 329:321–328

    Google Scholar 

  • Rahman B, Schneider HP, Bröer A, Deitmer JW, Bröer S (1999) Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry 38:11577–11584

    Article  Google Scholar 

  • Regen DM, Tarpley HL (1978) Effects of pH on β-hydroxybutyrate transport in rat erythrocytes and thymocytes. Biochim Biophys Acta 508:539–550

    Article  Google Scholar 

  • Rice WR, Steck TL (1976) Pyruvate flux into resealed ghosts from human erythrocytes. Biochim Biophys Acta 433:39–53

    Article  Google Scholar 

  • Rice WR, Steck TL (1977) Pyruvate transport into inside-out vesicles icolated from human erythrocyte membranes. Biochim Biophys Acta 468:305–317

    Article  Google Scholar 

  • Roth DA (1991) The sarcolemmal lactate transporter — transmembrane determinants of lactate flux. Med Sci Sports Exerc 23:925–934

    Google Scholar 

  • Sachs JR, Knauf PA, Dunham PB (1975) Transport through red cell membranes. In: Surgenor, DMcN (ed) The red blood cell, vol 2. Academic Press, New York, pp 613–703

    Google Scholar 

  • Saier MH (1994) Computer-aided analyses of transport protein sequences — gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93

    Google Scholar 

  • Saxena M, Henderson GB (1996) MOAT4, a novel multispecific organic-anion transporter for glucuronides and mercapturates in mouse L1210 cells and human erythrocytes. Biochem J 320:273–281

    Google Scholar 

  • Sekine T, Cha SH, Endou H (2000) The multispecific organic anion transporter (OAT) family. Pflügers Arch 440:337–350

    Article  Google Scholar 

  • Seulberger H, Unger CM, Risau W (1992) HT7, Basigin, gp42 and OX-47 — many names for one developmentally regulated immunoglobulin-like surface glycoprotein on blood-brain barrier endothelium, epthelial tissue barriers and neurons. Neurosci Letters 140:93–97

    Article  Google Scholar 

  • Sherman IW (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 43:453–495

    MathSciNet  Google Scholar 

  • Soulinna EM, Buchsbaum RN, Racker E (1975) The effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Res 35:1865–1872

    Google Scholar 

  • Stein WD (1989) Kinetics of transport — analyzing, testing, and characterizing models using kinetic approaches. Methods Enzymol 171:23–62

    Article  Google Scholar 

  • Takanaga H, Tamai I, Inaba S, Sai Y, Higashida H, Yamamoto H, Tsuji A (1995) cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter. Biochem Biophys Res Commun 217:370–377

    Article  Google Scholar 

  • Torrents D, Mykkanen J, Pineda M, Feliubadalo L, Estevez R, De Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontans ML, Aula P, Palacin M (1999) Identification of SLC7A7, encoding y+LAT-l, as the lysinuric protein intolerance gene. Nat Genet 21:293–296

    Article  Google Scholar 

  • Van der Jagt DL, Hunsaker LA, Campos NM, Baack BR (1990) D-Lactate production in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol 42:277–284

    Article  Google Scholar 

  • Walter A, Gutknecht J (1984) Monocarboxylic acid permeation through lipid bilayer membranes. J Membrane Biol 77:255–264

    Article  Google Scholar 

  • Wheeler TJ, Hinkle PC (1981) Kinetic properties of the reconstituted glucose transporter from human erythrocytes. J Biol Chem 256:8907–8914

    Google Scholar 

  • Widdas WF (1988) Old and new concepts of the membrane transport of glucose in cells. Biochim Biophys Acta 947:385–404

    Article  Google Scholar 

  • Wilson MC, Heddle C, Kirk P, Roberts M, Meredith D, Barclay AN, Brown MH, Halestrap AP (1999) Co-localization of immunoglobulin superfamily member CD147 with a monocarboxylate transporter (MCT1). J Physiol 517P:58P

    Google Scholar 

  • Wilson MC, Jackson VN, Heddle C, Price NT, Pilegaard H, Juel C, Bonen A, Montgomery I, Hutter OF, Halestrap AP (1998) Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J Biol Chem 273:15920–15926

    Article  Google Scholar 

  • Xu ASL, Kuchel PW (1993) Characterisation of erythrocyte transmembrane exchange of trifluoroacetate using F-19-NMR — evidence for transport via the monocarboxylate transporter. Biochim Biophys Acta 1150:35–44

    Article  Google Scholar 

  • Yoon H, Philp NJ (1998) Genonmic structure and developmental expression of the chicken moncarboxylate transporter MCT3 Gene. Exp Eye Res 67:417–424

    Article  Google Scholar 

  • Yoon HY, Fanelli A, Grollman EF, Philp NJ (1997) Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem Biophys Res Commun 234:90–94

    Article  Google Scholar 

  • Zhao C, Wilson MC, Schuit F, Halestrap AP, Rutter GA (2001) Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 50:361–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halestrap, A.P. (2003). Monocarboxylate and other Organic Anion Transport. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics