Skip to main content

Abstract

Since I last wrote a review on this topic 25 years ago (Naftalin and Holman 1977) the dominant advance in our understanding of sugar transport has come from the publication of the amino acid sequence of the glucose transporters (GLUTs) with the 2D topology of the transporter in the membrane (Mueckler et al. 1985). Corroboration of the details of this 2D structure has been a major and continuing effort. Unfortunately, there has not been a commensurate increase in understanding of the mechanism of sugar transport. Although some advance in our perceptions of the mechanism of sugar transport has occurred, until recently, this has only been tenuously related to the transporter structure. Real advances can only come from knowledge of the 3D structural changes in GLUT, which accompany transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzal I, Cunningham P, Naftalin RJ (2001) Interactions of ATP, 17β-estradiol, genistein and the anti-estrogens, ICI 182780 (Faslodex™) and 4-OH tamoxifen with human erythrocyte glucose transporter, GLUTI. Proceedings, Pharmaconference 2001, Inter-laken, organizer: MA Hediger

    Google Scholar 

  • Afzal I, Cunningham P, Naftalin RJ (2002) Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUTI. Biochem J 365:707–719

    Article  Google Scholar 

  • Alvarez J, Lee DC, Baldwin SA, Chapman D (1987) Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter. J Biol Chem 262:3502–3509

    Google Scholar 

  • Appleman JR, Lienhard GE (1989) Kinetics of the purified glucose transporter — direct measurement of the rates of interconversion of transporter conformers. Biochemistry 28:8221–8227

    Article  Google Scholar 

  • Arbuckle MI, Kane S, Porter LM, Seatter MJ, Gould GW (1996) Structure-function analysis of liver type (GLUT2) and brain type (GLUT3) glucose transporters: Expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry 35:16519–16527

    Article  Google Scholar 

  • Ardizzone TD, Bradley RJ, Freeman AM, Dwyer DS (2001) Inhibition of glucose transport in PC12 cells by the atypical antipsychotic drugs risperidone and clozapine, and structural analogs of clozapine. Brain Res 923:82–90

    Article  Google Scholar 

  • Ardizzone TD, Lu XH, Dwyer DS (2002) Calcium-independent inhibition of glucose transport in PC-12 and L6 cells by calcium channel antagonists. Am J Physiol 283:C579–C586

    Google Scholar 

  • Baker GF, Naftalin RJ (1979) Evidence for multiple operational affinities for D-glucose inside the human erythrocyte membrane. Biochim Biophys Acta 550:474–484

    Article  Google Scholar 

  • Baker GF, Rogers HJ (1972) Effects of psychotropic drugs on the erythrocyte permeability to glucose and ethylidene glucose. Biochem Pharmacol 21:1871–1878

    Article  Google Scholar 

  • Baker GF, Widdas WF (1973) Asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of two component model. J Physiol 231:143–165

    Google Scholar 

  • Basketter DA, Widdas WF (1978) Asymmetry of the hexose transfer system in human erythrocytes: Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors. J Physiol 278:389–401

    Google Scholar 

  • Baldwin SA (1993) Mammalian passive glucose transporters — members of a ubiquitous family of active and passive transport proteins. Biochim Biophys Acta 1154:17–49

    Article  Google Scholar 

  • Barnett JE, Holman GD, Munday KA (1973) Structural requirements for binding to the sugar transport system of the human erythrocyte. Biochem J 131:211–221

    Google Scholar 

  • Bell GI, Burant CF, Takeda T, Gould GW (1993) Structure and function of mammalian facultative sugar transporters. J Biol Chem 268:19161–19164

    Google Scholar 

  • Buchs AE, Sasson S, Joost HG, Cerasi E (1998) Characterisation of GLUT5 domains responsible for fructose transport. Endocrinology 139:827–831

    Article  Google Scholar 

  • Bunn RC, Jensen MA, Reed BC (1999) Protein interactions with the glucose transporter binding protein GLUT1CBP that provide a link between GLUTI and the cytoskeleton. Mol Biol Cell 10:819–832

    Google Scholar 

  • Cairns MT, Elliot DA, Scudder PR, Baldwin SA (1984) Proteolytic and chemical dissection of the human erythrocyte glucose transporter. Biochem J 221:179–188

    Google Scholar 

  • Calderhead DM, Kitagawa K, Tanner LI, Holman GD, Lienhard GE (1990) Insulin regulation of the 2 glucose transporters in 3T3-L1 adipocytes. J Biol Chem 265:13800–13808

    Google Scholar 

  • Carruthers A (1990) Facilitated diffusion of glucose. Physiol Rev 70:1135–1176

    Google Scholar 

  • Carruthers A (1991) Mechanisms for the facilitated diffusion of substrates across cell membranes. Biochemistry 30:3898–3907

    Article  Google Scholar 

  • Carruthers A, Helgerson AL (1989) The human erythrocyte sugar transporter is also a nucleotide binding protein. Biochemistry 28:8337–8346

    Article  Google Scholar 

  • Carruthers A, Helgerson AL (1991) Inhibition of sugar transport produced by ligand binding at opposite sides of the membrane. Evidence for simultaneous occupancy of the carrier by maltose and cytochalasin B. Biochemistry 30:3907–3915

    Article  Google Scholar 

  • Chin JJ, Jung EK, Chen V, Jung CY (1987) Structural basis of erythrocyte glucose transporter function in proteoliposome vesicles: Circular dichroism measurements. Proc Natl Acad Sci USA 84:4113–4116

    Article  ADS  Google Scholar 

  • Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A (1995) Net sugar transport is a multistep process — evidence for cytosolic sugar binding-sites in erythrocytes. Biochemistry 34:15395–15406

    Article  Google Scholar 

  • Cloherty EK, Heard KS, Carruthers A (1996a) Human erythrocyte sugar transport is incompatible with available carrier models. Biochemistry 35:10411–10421

    Article  Google Scholar 

  • Cloherty EK, Diamond DL, Heard KS, Carruthers A (1996b) Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism. Biochemistry 35:13231–13239

    Article  Google Scholar 

  • Coderre PE, Cloherty EK, Zottola RJ, Carruthers A (1995) Rapid substrate translocation by the multi-subunit, erythroid glucose-transporter requires subunit associations but not cooperative ligand-binding. Biochemistry 34:9762–9773

    Article  Google Scholar 

  • Cohen RM, Nordahl TE, Semple WE, Andreason P, Litman RE, Pickar D (1997) The brain metabolic patterns of clozapine and fluphenazine treated patients with schizophrenia during a continuous performance task. Arch Gen Psychiatry 54:481–486

    Article  Google Scholar 

  • Cope DL, Holman GD, Baldwin SA (1994) Domain assembly of the Gluti glucose-transporter. Biochem J 300:291–294

    Google Scholar 

  • Dauterive R, Laroux S, Bunn RC, Chaisson A, Sanson T, Reed BC (1996) C-terminal mutations that alter the turnover number for 3–0-Methylglucose transport by GLUTI and GLUT4. J Biol Chem 271:11414–11421

    Article  Google Scholar 

  • Davies A, Ciardeli TL, Leinhard GE, Boyle JM, Whetton AD, Baldwin SA (1990) Site-specific antibodies as probes of the topology and function of the human erythrocyte glucose transporter. Biochem J 266:799–808

    Google Scholar 

  • Devés R, Krupka RM (1978) Cytochalasin B and the kinetics of inhibition of biological transport. A case of asymmetric binding to the glucose carrier. Biochim Biophys Acta 510:339–348

    Article  Google Scholar 

  • Dickinson R, Lieb WR, Franks NP (1995) The effects of temperature on the interactions between volatile general-anesthetics and a neuronal nicotinic acetylcholine-receptor. Br J Pharmacol 116:2949–2956

    Article  Google Scholar 

  • Doege H, Schürmann A, Ohnimus H, Monser V, Holman GD, Joost H (1998) Serine-294 and threonine-295 in the exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are often involved in the conformational alterations during the transport process. Biochem J 329:289–293

    Google Scholar 

  • Due DA, Cook JA, Fletcher SJ, Zhi-Chao Q (1995a) A “cysteineless” GLUTI glucose transporter has normal function when expressed in Xenopus oocytes. Biochem Biophys Res Commun 208:590–596

    Article  Google Scholar 

  • Due DA, Zhi-Chao Q, Thomas JM, Buchs A, Powers A, May JM (1995b) Role of the C-terminal tail of the GLUTI glucose transporter in its expression and function in Xenopus laevis oocytes. Biochemistry 34:5462–5471

    Article  Google Scholar 

  • Dwyer DS, Liu Y, Bradley RJ (1999) Dopamine receptor antagonists modulate glucose uptake in rat pheochromocytoma (PC12) cells. Neurosci Letters 274:151–154

    Article  Google Scholar 

  • Dwyer DS (2001) Model of the 3-D structure of the GLUT3 glucose transporter and molecular dynamics simulation of glucose transport. Proteins: Structure, Function and Genetics 42:531–541

    Article  Google Scholar 

  • Eilam Y, Stein WD (1974) A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red cell. Biochim Biophys Acta 266:161–173

    Google Scholar 

  • El-Barbary A, Fenstermacher JD, Haspel HC (1996) Barbiturate inhibition of GLUT-1 mediated hexose transport in human erythrocytes exhibits substrate dependence for equilibrium exchange but not unidirectional sugar flux. Biochemistry 35:15222–15227

    Article  Google Scholar 

  • Fischbarg J, Min C, Czegledy F, Li J, Iserovich P, Kuang KY, Hubbard J, Garner M, Rosen OR, Golde DW, Vera JC (1993) Evidence that facilitative glucose transporters may fold as β-barrels. Proc Natl Acad Sci USA 90:11658–11662

    Article  ADS  Google Scholar 

  • Fry DC, Kuby SA, Mildvan AS (1986) ATP-binding site of adenylate kinase: Mechanistic implications of homology with ras-encoded p21, F1-ATPase, and other nucleotide binding proteins. Proc Natl Acad Sci USA 83:907–911

    Article  ADS  Google Scholar 

  • Gaut ZN (1974) Influence of various substance which induce and inhibit aggregation on the uptake of deoxyglucose by human blood platelets. J Pharmacol Exp Therap 190:180–186

    Google Scholar 

  • Gibbs AF, Chapman D, Baldwin SA (1988) Proteolytic dissection as a probe of conformational changes in the human erythrocyte glucose transport protein. Biochem J 256:421–427

    Google Scholar 

  • Ginsburg H, Ram D (1975) Zero trans and equilibrium exchange efflux and infinite trans uptake of galactose by human erythrocytes. Biochim Biophys Acta 382:396–376

    Google Scholar 

  • Gjedde A, Rasmussen M (1980) Pentobarbital anesthesia reduces blood-brain glucose transfer in the rat. J Neurochem 35:1382–1387

    Article  Google Scholar 

  • Gorga F, Lienhard GE (1981) Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter: Evidence for an alternating conformation model for transport. Biochemistry 20:5108–5113

    Article  Google Scholar 

  • Gould GW, Holman GD (1993) The glucose-transporter family — structure, function and tissue-specific expression. Biochem J 295:329–341

    Google Scholar 

  • Griffin JF, Rampai AL, Jung CY (1982) Inhibition of glucose transport in human erythrocytes by cytochalasins: A model based on diffraction studies. Proc Natl Acad Sci USA 79:3759–3763

    Article  ADS  Google Scholar 

  • Hamill S, Cloherty EK, Carruthers A (1999) The human erythrocyte sugar transporter presents two sugar import sites. Biochemistry 38:16974–16983

    Article  Google Scholar 

  • Hankin BL, Lieb WR, Stein WD (1972) Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell. Biochim Biophys Acta 288:114–126

    Article  Google Scholar 

  • Haspel HC, Rosenfeld MG, Rosen MO (1988) Characterisation of antisera to a synthetic carboxyl-terminal peptide of the glucose transporter protein. J Biol Chem 263:398–403

    Google Scholar 

  • Haspel HC, Stephenson KN, Davies-Hill T, El-Barbary A, Lobo JF, Croxen RL, Mougrabi W, Koehler-Stec EM, Fenstermacher JD, Simpson IA (1999) Effects of barbiturates on facilitative glucose transporters are pharmacologically specific and isoform selective. J Membrane Biol 169:45–53

    Article  Google Scholar 

  • Heard KS, Fidyk N, Carruthers A (2000) ATP-dependent substrate occlusion by the human erythrocyte sugar transporter. Biochemistry 39:3005–3014

    Article  Google Scholar 

  • Hebert DN, Carruthers A (1986) Direct evidence for ATP modulation of sugar-transport in human erythrocyte ghosts. J Biol Chem 261:93–99

    Google Scholar 

  • Helgerson AL, Carruthers A (1987) Equilibrium ligand binding to the human erythrocyte sugar transporter. J Biol Chem 262:5464–5475

    Google Scholar 

  • Helgerson AL, Hebert DN, Naderi S, Carruthers A (1989) Characterisation of two independent modes of action of ATP on human erythrocyte sugar transport. Biochemistry 28:6410–6417

    Article  Google Scholar 

  • Holman GD, Rees WD (1987) Photolabelling of the hexose transporter at external and internal sites: fragmentation patterns and evidence of conformational change. Biochim Biophys Acta 897:395–405

    Article  Google Scholar 

  • Honkanen RA, McBath H, Kushmerick C, Callender GE, Scarlata SF, Fenstermacher JD, Haspel HC (1995) Barbiturates inhibit hexose transport in cultured mammalian cells and human erythrocytes and interact directly with purified GLUT-1. Biochemistry 34:535–544

    Article  Google Scholar 

  • Hresko RC, Kruse M, Strube M, Mueckler M (1994) Topology of the Gluti glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem 269:20482–20488

    Google Scholar 

  • Hruz PW, Mueckler MM (1999) Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUTI glucose transporter. J Biol Chem 274:36176–36180

    Article  Google Scholar 

  • Hruz PW, Mueckler MM (2000) Cysteine-scanning mutagenesis of transmembrane segment 11 of the GLUTI facilitative glucose transporter. Biochemistry 39:9376–9372

    Article  Google Scholar 

  • Hruz PW, Murata H, Qiu HJ, Mueckler MM (2002) Indinavir induces acute and reversible peripheral insulin resistance in rats. Diabetes 51:937–942

    Article  Google Scholar 

  • Inukai K, Asano T, Katagiri H, Ana IM, Funaki M, Ishihara H, Tsukuda K, Kikuchi M, Ya-zaki Y, Oka Y (1994) Replacement of both tryptophan residues at 388 and 412 completely abolished cytochalasin-B photolabeling of the GLUTI glucose-transporter. Biochem J 302:355–361

    Google Scholar 

  • Iserovich P, Wang D, Ma L, Yang H, Zuniga FA, Pascual JM, Kuang KY, De Vivo DC, Fischbarg J (2002) Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Gluti are consistent with two transport channels per monomer. J Biol Chem 277:30991–30997

    Article  Google Scholar 

  • Janoshazi A, Solomon AK (1993) Initial steps of alpha-D-glucose and beta-D-glucose binding to intact red cell membranes. J Membrane Biol 132:167–178

    Article  Google Scholar 

  • Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membrane Biol 18:247–256

    Article  Google Scholar 

  • Kaloyianni M, Baker GF (1998) The effect of ATP-depletion on the inhibition of glucose exits from human red cells. Biochim Biophys Acta 1369:295–303

    Article  Google Scholar 

  • Kasahara T, Kasahara M (1997) Characterisation of rat GLUT4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: comparison with GLUTI glucose transporter. Biochim Biophys Acta 1324:111–119

    Article  Google Scholar 

  • King APJ, Tai P-KK, Carter-Su C (1991) Cytochalasin B interferes with conformational changes of the human erythrocyte glucose transporter induced by internal and external sugar binding. Biochemistry 30:11546–11553

    Article  Google Scholar 

  • Klepper J, Voit T (2002) Facilitated glucose transporter protein type 1 (GLUTI) deficiency syndrome: impaired glucose transport into brain — a review. Eur J Pediatrics 161:295–304

    Article  Google Scholar 

  • Klepper J, Vera JC, De Vivo DC (1998) Deficient transport of dehydroascorbic acid in the glucose transporter protein syndrome. Ann Neurol 44:286–287

    Article  Google Scholar 

  • Klepper J, Fischbarg J, Vera JC, Wang D, De Vivo DC (1999a) GLUT-1 deficiency: barbiturates potentiate haploin sufficiency in vitro. Pediatr Res 46:677–683

    Article  Google Scholar 

  • Klepper J, Wand D, Fischbarg J, Vera JC, Jarjour IT, O’Driscoll KR, De Vivo DC (1999b) Defective glucose transport across brain tissue barriers: a newly recognized neurological syndrome. Neurochem Res 24:587–594

    Article  Google Scholar 

  • Kozka IJ, Clark AE, Holman GD (1991) Chronic treatment with insulin selectively down-regulates cell-surface Glut4 glucose transporters in 3T3-L1 adipocytes. J Biol Chem 266:11726–11731

    Google Scholar 

  • Koumanov F, Yang J, Jones AE, Hatanaka Y, Holman GD (1998) Cell-surface biotinyla-tion of GLUT4 using bis-mannose photolabels. Biochem J 330:1209–1215

    Google Scholar 

  • Lachaal M, Rampai AL, Lee W, Shi Y-W, Jung CY (1996) GLUTI transmembrane glucose pathway affinity labelling with a transportable D-glucose diazirine. J Biol Chem 271:5225–5230

    Article  Google Scholar 

  • Lacko L, Wittke B, Geck P (1973) The temperature dependence of exchange transport of glucose in human erythrocytes. J Cell Physiol 82:213–318

    Article  Google Scholar 

  • LeFevre PG, Marshall JK (1958) Conformational specificity in a biological sugar transport system. Am J Physiol 194:333–337

    Google Scholar 

  • Levine M, Oxender DL, Stein WD (1965) The substrate-facilitated transport of the glucose carrier across the human erythrocyte membrane. Biochim Biophys Acta 109:151–163

    Article  Google Scholar 

  • Levine KB, Cloherty EK, Fidyk NJ, Carruthers A (1998) Structural and physiological determinants of human erythrocyte sugar transport regulation by adenosine triphosphate. Biochemistry 37:12221–12232

    Article  Google Scholar 

  • Lieb WR, Stein WD (1974) Testing and characterising the simple carrier. Biochim Biophys Acta 373:178–196

    Article  Google Scholar 

  • Liu H, Xiong S, Shi Y, Samuel SJ, Lachaal M, Jung CY (1995) ATP-sensitive binding of a 70 kDa cytosolic protein to the glucose transporter in rat adipocytes. J Biol Chem 270:7869–7875

    Article  Google Scholar 

  • Liu Q, Vera JC, Peng H, Golde DW (2001) The predicted ATP-binding domains in the hexose transporter GLUTI critically affect transporter activity. Biochemistry 40:7874–7881

    Article  Google Scholar 

  • Lowe AG, Walmsley AR (1986) The kinetics of glucose transport in human red cells. Biochim Biophys Acta 857:146–154

    Article  Google Scholar 

  • Lowe AG, Walmsley AR (1987) A single half-turnover of the glucose carrier of the human erythrocyte. Biochim Biophys Acta 903:547–550

    Article  Google Scholar 

  • Lowry JP, Fillenz M (2001) Real time monitoring of brain energy metabolism in vivo using microelectrochemical sensors: the effects of anesthesia. Bioelectrochem 54:39–47

    Article  Google Scholar 

  • Masiak SJ, LeFevre PG (1977) Glucose transport inhibition by proteolytic degradation of the human erythrocyte membrane. Biochim Biophys Acta 465:371–377

    Article  Google Scholar 

  • May JM, Beechem JM (1993) Monitoring conformational change in the human erythrocyte glucose carrier — use of a fluorescent probe attached to an exofacial carrier sulfhydryl. Biochemistry 32:2907–2915

    Article  Google Scholar 

  • May JM, Qui ZC, Beechem JM (1993) Tryptic digestion of the human erythrocyte glucose transporter — effects on ligand-binding and tryptophan fluorescence. Biochemistry 32:9524–9531

    Article  Google Scholar 

  • Miller DM (1968a) The kinetic of selective biological transport. Ill erythrocyte monosaccharide transport data. Biophys J 8:1329–1338

    Article  Google Scholar 

  • Miller DM (1968b) The kinetics of selective biological transport. IV Assessment of three carrier systems using the erythrocyte-monosaccharide transport data. Biophys J 8:1339–1352

    Article  Google Scholar 

  • Monden I, Olsowski A, Krause G, Keller K (2001) The large cytoplasmic loop of the glucose transporter GLUTI is an essential structural element for function. Biol Chem 382:1551–1558

    Article  Google Scholar 

  • Mueckler M, Makepeace C (1997) Identification of an amino acid residue that lies between the exofacial vestibule and exofacial substrate-binding site of the Gluti sugar permeation pathway. J Biol Chem 272:30141–30146

    Article  Google Scholar 

  • Mueckler M, Makepeace C (1999) Transmembrane segment 5 of the Gluti glucose transporter is an amphipathic helix that forms part of the sugar permeation pathway. J Biol Chem 274:10923–10926

    Article  Google Scholar 

  • Mueckler M, Makepeace C (2002) Analysis of transmembrane segment 10 of the Gluti glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility. J Biol Chem 277:3498–3503

    Article  Google Scholar 

  • Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Leinhard GE, Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 229:941–945

    Article  ADS  Google Scholar 

  • Muraoka A, Hashiramoto M, Clark AE, Edwards LC, Sakura H, Kadowaki T, Holman GD, Kasuga M (1995) Analysis of the structural features of the C-terminus of Gluti that are required for transport catalytic activity. Biochem J 311:699–704

    Google Scholar 

  • Murata H, Hruz PW, Mueckler M (2002) Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS 16:859–863

    Article  Google Scholar 

  • Naftalin RJ (1971) The role of unstirred layers in control of sugar movements across red cell membranes. Biochim Biophys Acta 211:65–78

    Google Scholar 

  • Naftalin RJ (1997) Evidence from studies of temperature-dependent changes of D-glucose, D-mannose and L-sorbose permeability that different states of activation of the human erythrocyte hexose transporter exist for good and bad substrates. Biochim Biophys Acta 1328:13–29

    Article  Google Scholar 

  • Naftalin RJ, Arain M (1999) Interactions of sodium pentobarbital with D-glucose and L-sorbose transport in human red cells. Biochim Biophys Acta 1419:78–88

    Article  Google Scholar 

  • Naftalin RJ, Holman GD (1977) Transport of sugars in human red cells. In: Ellory JC, Lew VL (eds) Membrane transport in red cells. Academic Press, New York, pp 257–300

    Google Scholar 

  • Naftalin RJ, Rist RJ (1994) Re-examination of hexose exchanges using rat erythrocytes evidence inconsistent with a one-site sequential exchange model, but consistent with a 2-site simultaneous exchange model. Biochim Biophys Acta 1191:65–78

    Article  Google Scholar 

  • Naftalin RJ, Smith PM, Roselaar SE (1985) Evidence for non-uniform distribution of D-glucose within human red cells during net exit and counterflow. Biochim Biophys Acta 820:235–249

    Article  Google Scholar 

  • Naftalin RJ, Afzal I, Browning J, Wilkins RJ, Ellory JC (2002) Effects of high-pressure on glucose transport and hydration interactions with the human erythrocyte glucose transporter. J Membrane Biol 186:113–129

    Article  Google Scholar 

  • Nishimura H, Pallardo FW, Seidner GA, Vannucci S, Simpson IA, Birnbaum MJ (1993) Kinetics of GLUTI and GLUT4 glucose transporters expressed in Xenopus oocytes. J Biol Chem 268:8514–8520

    Google Scholar 

  • Noel LE, Newgard CB (1997) Structural domains that contribute to substrate specificity in facilitated glucose transporters are distinct from those involved in kinetic function: studies with GLUT-l/GLUT-2 chimeras. Biochemistry 36:5465–5475

    Article  Google Scholar 

  • Oka Y, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Katagiri H, Akanuma Y, Takaku F (1990) C-terminal truncated glucose transporter is locked into an inward facing form without transport activity. Nature 345:550–553

    Article  ADS  Google Scholar 

  • Olsowski A, Monden I, Krause G, Keller K (2000) Cysteine-scanning mutagenesis of helices 2 and 7 in GLUTI identifies an exofacial cleft in both transmembrane segments. Biochemistry 39:2469–2474

    Article  Google Scholar 

  • Palfrey man RW, Clark AE, Denton RM, Holman GD, Kozka IJ (1992) Kinetic resolution of the separate GLUTI and GLUT4 glucose transport activities in 3T3-L1 cells. Bio-chem J 284:275–281

    Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    Google Scholar 

  • Saier MH (2000) Families of transmembrane sugar transport proteins. Mol Microbiol 35:699–710

    Article  Google Scholar 

  • Seatter MJ, De La Rue SA, Porter LM, Gould GW (1998) QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-l position of D-glucose and is involved in substrate selection at the exofacial binding site. Biochemistry 37:1322–1326

    Article  Google Scholar 

  • Sergeant S, Kim HD (1985) Inhibition of 3-O-methylglucose transport in human erythrocytes by forskolin. J Biol Chem 260:14677–14682

    Google Scholar 

  • Stein WD (1986) Transport and diffusion across cell membranes. Academic Press, New York

    Google Scholar 

  • Study RE, Barker JL (1981) Diazepam and (-)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci USA 78:7180–7184

    Article  ADS  Google Scholar 

  • Sultzman LA, Carruthers A (1999) Stop-flow analysis of cooperative interactions between GLUTI sugar import and export sites. Biochemistry 38:6640–6650

    Article  Google Scholar 

  • Talaga DS, Lau WL, Roder H, Tang J, Jia Y, De Grado WF, Hochstrasser RM (2000) Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc Natl Acad Sci USA 9:13021–13026

    Article  ADS  Google Scholar 

  • Tamori Y, Hashiramoto M, Clark AE, Mori H, Muraoka A, Kadowaki T, Holman GD, Kasuga M (1994) Substitution at Pro(385) of Gluti perturbs the glucose transport function by reducing conformational flexibility. J Biol Chem 269:2982–2986

    Google Scholar 

  • Taylor LP, Holman GD (1981) Symmetrical kinetic parameters of 3-O-methyl D-glucose transport in adipocytes in the presence and absence of insulin. Biochim Biophys Acta 642:325–335

    Article  Google Scholar 

  • Uldry M, Ibberson M, Hosokawa M, Thorens B (2002) GLUT2 is a high affinity glucosamine transporter. FEBS Letters 524:199–203

    Article  Google Scholar 

  • Vera JC, Reyes AM, Velasquez FV, Rivas CI, Zhang RH, Strobel P, Siebe JC, Nunez-Alarcon J, Golde DW (2001) Direct inhibition of the hexose transporter GLUTI by tyrosine kinase inhibitors. Biochemistry 40:777–790

    Article  Google Scholar 

  • Wadzinski BE, Shanahan MF, Seamon KB, Ruoho AE (1990) Localization of the forskolin photolabelling site within the monosaccharide transporter of human erythrocytes. Bio-chem J 272:151–158

    Google Scholar 

  • Wandel S, Buchs A, Schürmann A, Summers SA, Powers AC, Shanahan MF, Joost H (1996) Glucose transport activity and ligand binding (cytochalasin B, IAPS-forskolin) of chimeric constructs of GLUT2 and GLUT4 expressed in COS-7-cells. Biochim Biophys Acta 1284:56–62

    Article  Google Scholar 

  • Wheeler TJ (1986) The kinetics of glucose transport in human erythrocytes: zero transport and infinite trans efflux at 0 °C. Biochim Biophys Acta 862:387–398

    Article  Google Scholar 

  • Wheeler TJ, Cole D, Hauck MA (1998) Characterization of glucose transport activity reconstituted from heart and other tissues. Biochim Biophys Acta 1414:217–230

    Article  Google Scholar 

  • Wilbrandt W (1972) Coupling between simultaneous movements of carriers. J Membrane Biol 10:357–366

    Article  Google Scholar 

  • Wu L, Fritz JD, Powers AC (1998) Different functional domains of GLUT2 glucose transporter are required for glucose affinity and substrate specificity. Endocrin 139:4205–4212

    Article  Google Scholar 

  • Yang J, Clark AE, Kozka IJ, Cushman SW, Holman GD (1992) Development of an intracellular pool of glucose transporters in 3T3-L1 cells. J Biol Chem 267:10393–10399

    Google Scholar 

  • Yano Y, May JM (1993) Ligand induced conformational changes modify proteolytic cleavage of adipocytes insulin-sensitive glucose transporter. Biochem J 295:183–188

    Google Scholar 

  • Zeng H, Parthasarathy R, Rampai AL, Jung CY (1996) Proposed structure of putative glucose channel in GLUT 1 facilitative glucose transporter. Biophys J 70:14–21

    Article  Google Scholar 

  • Zottola RJ, Cloherty EK, Coderre PE, Carruthers A (1995) Glucose transporter function is controlled by transporter oligomeric structure — a single, intramolecular disulfide promotes Gluti tetramerization. Biochemistry 34:9734–9747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naftalin, R.J. (2003). Glucose Transport. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics