Skip to main content

Equilibrative Nucleoside Transport Proteins

  • Chapter
Red Cell Membrane Transport in Health and Disease

Abstract

In human and other mammalian cells, plasma membrane transport of nucleosides is brought about by members of the concentrative (Na+-dependent) nucleoside transporter (CNT) and equilibrative (NaMndependent) nucleoside transporter (ENT) families (Hyde et al. 2001; Ritzel et al. 2001). CNTs have been described primarily in specialized epithelia, whereas ENTs occur in most, possibly all, cell types and tissues, including red blood cells (RBCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agbanyo FR, Cass CE, Paterson ARP (1988) External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine. Mol Pharmacol 33:332–337

    Google Scholar 

  • Almedia AR, Jarvis SM, Young JD, Paterson ARP (1984) Photoaffinity labelling of the nucleoside transporter of cultured mouse lymphoma cells. FEBS Letters 176:444–448

    Article  Google Scholar 

  • Barros LF, Yudilevich DL, Jarvis SM, Beaumont N, Young JD, Baldwin SA (1995) Immu-nolocalisation of nucleoside transporters in human placental trophoblast and endothelial cells: Evidence for multiple transporter isoforms. Eur J Physiol 429:394–399

    Article  Google Scholar 

  • Beaumont N, Baldwin SA, Cass CE, Young JD (1995) Antibodies as probes of nitrobenzylthioinosine-sensitive nucleoside transporters. In: Belardinelli L, Pelleg A (eds) Adenosine and adenine nucleotides: from molecular biology to integrative physiology. Kluwer Academic Publishers, Norwell, MA, pp 55–60

    Chapter  Google Scholar 

  • Beutler E (2001) Energy metabolism and maintenance of erythrocytes. In: Beutler E, Coller BS, Lichtman MA, Kipps TJ, Seligsohn U (eds) Williams hematology, 6th edn. McGraw-Hill, New York, pp 319–332

    Google Scholar 

  • Boleti H, Coe I, Baldwin SA, Young JD, Cass CE (1997) Molecular identification of the equilibrative NBMPR-sensitive (es) nucleoside transporter and demonstration of an equilibrative NBMPR-insensitive (ei) transport activity in human erythroleukemia (K — 562) cells. Neuropharmacology 36:1167–1179

    Article  Google Scholar 

  • Cass CE (1995) Nucleoside transport. In: Georgopadakou NH (ed) Drug transport in antimicrobial and anticancer chemotherapy. Marcel Dekker, New York, pp 404–451

    Google Scholar 

  • Cass CE, Paterson ARP (1976) Nitrobenzylthioinosine binding sites in the erythrocyte membrane. Biochim Biophys Acta 419:285–294

    Article  Google Scholar 

  • Cass CE, Gaudette LA, Paterson ARP (1974) Mediated transport of nucleosides by human erythrocytes. Specific binding of the inhibitor nitrobenzylthioinosine to nucleoside transport sites in the erythrocyte membrane. Biochim Biophys Acta 345:1–10

    Article  Google Scholar 

  • Coe IR, Griffiths M, Young JD, Baldwin SA, Cass CE (1997) Assignment of the human equilibrative nucleoside transporter (hENTl) to 6p21.1–p21.1. Genomics 45:459–460

    Article  Google Scholar 

  • Craik JD, Good AH, Gottschalk R, Jarvis SM, Paterson ARP, Cass CE (1988) Identification of glucose and nucleoside transport proteins in neonatal pig erythrocytes using monoclonal antibodies against band 4.5 polypeptides of adult human and pig erythrocytes. Biochem Cell Biol 66:839–852

    Article  Google Scholar 

  • Crawford CR, Patel DH, Naeve C, Belt JA (1998) Cloning of the human equilibrative, ni-trobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside transporter ei by functional expression in a transport-deficient cell line. J Biol Chem 273:5288–5293

    Article  Google Scholar 

  • De Koning H, Diallinas G (2000) Nucleobase transporters. Mol Membrane Biol 75:75–94

    Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    Article  Google Scholar 

  • Fincham DA, Wolowyk MW, Young JD (1991) Nucleoside uptake by red blood cells from a primitive vertebrate, the Pacific hagfish (Eptatretus stouti), is mediated by a nitro-benzylthioinosine-insensitive transport system. Biochim Biophys Acta 1069:123–126

    Article  Google Scholar 

  • Gati WP, Paterson ARP (1989) Nucleoside transport. In: Agre P, Parker JC (eds) Red blood cell membranes. Marcel Dekker, New York, pp 635–661

    Google Scholar 

  • Good AH, Craik JD, Jarvis SM, Kwong FYP, Young JD, Paterson ARP, Cass CE (1987) Characterisation of monoclonal antibodies that recognise band 4.5 polypeptides associated with nucleoside transport in pig erythrocytes. Biochem J 244:749–755

    Google Scholar 

  • Griffith DA, Jarvis SM (1996) Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta 1286:153–181

    Article  Google Scholar 

  • Griffiths M, Beaumont N, Yao SYM, Sundaram M, Boumah CE, Davies A, Kwong FYP, Coe I, Cass CE, Young JD, Baldwin SA (1997a) Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nature Medicine 3:89–93

    Article  Google Scholar 

  • Griffiths M, Yao SYM, Abidi F, Phillips SEV, Cass CE, Young JD, Baldwin SA (1997b) Molecular cloning of a nitrobenzylthioinosine (NBMPR)-insensitive (ei) equilibrative nucleoside transporter from human placenta. Biochem J 328:739–743

    Google Scholar 

  • Hyde RJ, Abidi F, Griffiths M, Yao SYM, Sundaram M, Phillips SEV, Cass CE, Young JD, Baldwin SA (2000) Probing the structure/function relationships of human equilibrative nucleoside transporters using site-directed mutagenesis. Drug Dev Res 50:38

    Google Scholar 

  • Hyde RJ, Cass CE, Young JD, Baldwin SA (2001) The ENT family of eukaryote nucleoside and nucleobase transporters: recent advances in the investigation of structure/function relationships and the identification of novel isoforms. Mol Membrane Biol 18:53–63

    Article  Google Scholar 

  • Jarvis SM (1986) Nitrobenzylthioinosine-sensitive nucleoside transport system: mechanism of inhibition by dipyridamole. Mol Pharmacol 30:659–665

    Google Scholar 

  • Jarvis SM, Young JD (1980a) Nucleoside transport in human and sheep erythrocytes: evidence that nitrobenzylthioinosine binds specifically to functional nucleoside transport sites. Biochem J 190:377–383

    Google Scholar 

  • Jarvis SM, Young JD (1980b) Solubilisation of the nucleoside translocation system from human and nucleoside-permeable sheep erythrocytes. FEBS Letters 117:33–36

    Article  Google Scholar 

  • Jarvis SM, Young JD (1981) Extraction and partial purification of the nucleoside transport system from human erythrocytes based on the assay of nitrobenzylthioinosine binding activity. Biochem J 194:331–339

    Google Scholar 

  • Jarvis SM, Young JD (1982) Nucleoside translocation in sheep reticulocytes and in erythrocytes from newborn lambs. A proposed molecular model for the nucleoside transporter. J Physiol 324:47–66

    Google Scholar 

  • Jarvis SM, Young JD (1983) Nucleoside transport in animal cells. Bioscience Reports 3:309–322

    Article  Google Scholar 

  • Jarvis SM, Young JD (1986) Nucleoside transport in rat erythrocytes. Two components with differences in sensitivity to inhibition by nitrobenzylthioinosine and p-chloromercuriphenyl sulphonate. J Membrane Biol 93:1–10

    Article  Google Scholar 

  • Jarvis SM, McBride D, Young JD (1982) Erythrocyte nucleoside transport: asymmetrical binding of nitrobenzylthioinosine to nucleoside permeation sites. J Physiol 324:31–46

    Google Scholar 

  • Jarvis SM, Young JD, Wu JSR, Belt JA, Paterson ARP (1986) Photoaffinity labelling of the human erythrocyte glucose transporter with 8-azidoadenosine. J Biol Chem 261:11077–11085

    Google Scholar 

  • Kiss A, Farah K, Kim J, Garriock RJ, Drysdale TA, Hammond JR (2000) Molecular cloning and functional characterization of inhibitor-sensitive (mENT1) and inhibitor-resistant (mENT2) equilibrative nucleoside transporters from mouse brain. Biochem J 352:363–372

    Article  Google Scholar 

  • Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316:234–238

    Article  ADS  Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241

    Article  ADS  Google Scholar 

  • Kwong FYP, Baldwin SA, Scudder PR, Jarvis SM, Choy MYM, Young JD (1986) Erythrocyte nucleoside and sugar transport, endo-beta-galactosidase and endoglycosidase-F digestion of partially-purified human and pig transporter proteins. Biochem J 240:349–356

    Google Scholar 

  • Kwong FYP, Tse CM, Jarvis SM, Choy YM, Young JD (1987) Purification and reconstitution studies of the nucleoside transporter from pig erythroctyes. Biochim Biophys Acta 904:105–116

    Article  Google Scholar 

  • Kwong FYP, Davies A, Tse CM, Young JD, Henderson PJF, Baldwin SA (1988) Purification of the human erythrocyte nucleoside transporter by immunoaffinity chromatography. Biochem J 255:243–249

    Google Scholar 

  • Kwong FYP, Fincham HE, Davies A, Beaumont N, Henderson PJF, Young JD, Baldwin SA (1992) Mammalian nitrobenzylthioinosine-sensitive nucleoside transport proteins: immunological evidence that transporters differing in size and inhibitor-specificity share sequence homology. J Biol Chem 267:21954–21960

    Google Scholar 

  • Kwong FYP, Wu JSR, Fincham HE, Davies A, Henderson PJF, Baldwin SA, Young JD (1993) Enzymic cleavage as a probe of the molecular structures of mammalian equili-brative nucleoside transporters. J Biol Chem 268:22127–22134

    Google Scholar 

  • Loewen SK, Ng AML, Yao SYM, Cass CE, Baldwin SA, Young JD (1999) Identification of amino acid residues responsible for the pyrimidine and purine nucleoside specificities of human concentrative Na+-nucleoside cotransporters hCNTl and hCNT2. J Biol Chem 274:24475–24484

    Article  Google Scholar 

  • Mackey JR, Yao SYM, Smith KM, Karpinski E, Baldwin SA, Cass CE, Young JD (1999) Gemcitabine transport mediated by recombinant plasma membrane mammalian nucleoside transporters expressed in Xenopus oocytes. J Natl Cancer Inst 91:1876–1881

    Article  Google Scholar 

  • Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 229:941–945

    Article  ADS  Google Scholar 

  • Murray AW (1971) The biological significance of purine salvage. Annu Rev Biochem 40:881–826

    Article  Google Scholar 

  • Oliver JM, Paterson ARP (1971) Nucleoside transport. I. A mediated process in human erythrocytes. Can J Biochem 49:262–270

    Article  Google Scholar 

  • Paterson ARP, Oliver JM (1971) Nucleoside transport. II. Inhibition by p-nitrobenzylthioinosine and related compounds. Can J Biochem 49:271–274

    Google Scholar 

  • Pau SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol 62:1–34

    Google Scholar 

  • Persson B, Argos P (1994) Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol 237:182–192

    Article  Google Scholar 

  • Plagemann PG, Woffendin C (1987) Purine and pyrimidine transport and permeation in human erythrocytes. Biochim Biophys Acta 899:295–301

    Article  Google Scholar 

  • Ritzel MWL, Ng AML, Yao SYM, Graham K, Loewen SK, Smith KM, Hyde RJ, Karpinski E, Cass CE, Baldwin SA, Young JD (2001) Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). Mol Membrane Biol 18:65–72

    Article  Google Scholar 

  • Rost B, Fariselli P, Casadio R (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Prot Sei 5:1704–1718

    Article  Google Scholar 

  • Shi MM, Wu JSR, Lee CM, Young JD (1984) Nucleoside transport. Photoaffinity labelling of high affinity nitrobenzylthioinosine binding sites in rat and guinea pig lung. Biochem Biophys Res Commun 118:594–600

    Article  Google Scholar 

  • Sonnhammer ELL, Von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. In: Glasgow J, Littlejohn T, Major F, Lathrop R, Sankoff D, Sensen C (eds) Proceedings of the sixth international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, CA, pp 175–182

    Google Scholar 

  • Sundaram M, Yao SYM, Ng AML, Griffiths M, Cass CE, Baldwin SA, Young JD (1998) Chimeric constructs between human and rat equilibrative nucleoside transporters (hENTl and rENT1) reveal hENTl structural domains interacting with coronary vasoactive drugs. J Biol Chem 273:21519–21525

    Article  Google Scholar 

  • Sundaram M, Yao SYM, Ingram JC, Berry ZA, Abidi F, Cass CE, Baldwin SA, Young JD (2001a) Topology of a human equilibrative, nitrobenzylthioinosine (NBMPR)-sensitive nucleoside transporter (hENTl) implicated in the cellular uptake of adenosine and anti-cancer drugs. J Biol Chem 276:45270–45275

    Article  Google Scholar 

  • Sundaram M, Yao SYM, Ng AML, Cass CE, Baldwin SA, Young JD (2001b) Equilibrative nucleoside transporters: mapping regions of interaction for the substrate analogue nitrobenzylthioinosine (NBMPR) using rat chimeric proteins. Biochemistry 40:8146–8151

    Article  Google Scholar 

  • Tse CM, Wu JSR, Young JD (1985a) Evidence for the asymmetrical binding of p-chloromercuriphenyl sulphonate to the human erythrocyte nucleoside transporter. Biochim Biophys Acta 88:316–324

    Google Scholar 

  • Tse CM, Belt JA, Jarvis SM, Paterson ARP, Wu JS, Young JD (1985b) Reconstitution studies of the human erythrocyte nucleoside transporter. J Biol Chem 260:3506–3511

    Google Scholar 

  • Tucker EM, Young JD (1988) Genetic control of red cell nucleoside transport and its association with the B blood group locus and nucleoside Phosphorylase activity in sheep. Biochem Genet 26:489–501

    Article  Google Scholar 

  • Vickers MF, Mani R, Sundaram M, Hogue DL, Young JD, Baldwin SA, Cass CE (1999) Functional production and reconstitution of the human equilibrative nucleoside transporter (hENTl) in Saccharomyces cerevisiae: Interaction of inhibitors with recombinant hENTl and a glycosylation-defective derivative (hENTl/N48Q). Biochem J 339:21–32

    Article  Google Scholar 

  • Ward JL, Sherali A, Mo Z-P, Tse CM (2000) Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. ENT2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine. J Biol Chem 275:8375–8381

    Article  Google Scholar 

  • Williams JB, Lanahan AA (1995) A mammalian delayed-early response gene encodes HNP36, a novel, conserved nucleolar protein. Biochem Biophys Res Commun 213:325–333

    Article  Google Scholar 

  • Williams JB, Rexer B, Sirripurapu S, Suthra J, Goldstein R, Phillips JA, Haley LL, Sait SN, Shows TB, Smith CM, Gerhard DS (1997) The human HNP36 gene is localized to chromosome 11q13 and produces alternate transcripts that are not mutated in multiple endocrine neoplasia, type 1 (MEN I) syndrome. Genomics 42:325–330

    Article  Google Scholar 

  • Wu JS, Young JD (1984) Photoaffinity labelling of nucleoside transport proteins in plasma membranes isolated from rat and guinea pig liver. Biochem J 220:499–506

    Google Scholar 

  • Wu JS, Jarvis SM, Young JD (1983a) The human erythrocyte nucleoside and glucose transporters are both band 4.5 membrane polypeptides. Biochem J 214:995–997

    Google Scholar 

  • Wu JS, Kwong FYP, Jarvis SM, Young JD (1983b) Identification of the erythrocyte nucleoside transporter as a band 4.5 polypeptide. Photoaffinity labelling studies using ni-trobenzylthioinosine. J Biol Chem 258:13745–13751

    Google Scholar 

  • Yao SYM, Ng AML, Muzyka WR, Griffiths M, Cass CE, Baldwin SA, Young JD (1997) Molecular cloning and functional characterisation of NBMPR-sensitive (es) and NBMPR-insensitive (ei) equilibrative nucleoside transporter proteins (rENT1 and rENT2) from rat tissues. J Biol Chem 272:28423–28430

    Article  Google Scholar 

  • Yao SYM, Ng AML, Sundaram M, Cass CE, Baldwin SA, Young JD (2001a) Transport of antiviral 3’-deoxy-nucleoside drugs by recombinant human and rat equilibrative, NBMPR-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol Membrane Biol 18:161–167

    Article  Google Scholar 

  • Yao SYM, Sundaram M, Chomey EG, Cass CE, Baldwin SA, Young JD (2001b) Identification of Cys140 in helix 4 as an exofacial cysteine residue within the substrate-translocation channel of rat equilibrative nitrobenzylthioinosine (NBMPR)-insensitive nucleoside transporter rENT2. Biochem J 353:387–393

    Article  Google Scholar 

  • Yao SYM, Sundaram M, Vickers MF, Chomey EG, Cass CE, Baldwin SA, Young JD (2002) Functional and molecular characterization of nucleobase transport by recombinant human and rat ENT1 and ENT2 equilibrative nucleoside transport proteins produced in Xenopus oocytes. Chimeric constructs reveal a role for the ENT2 helix 5–6 region in nucleobase translocation. J Biol Chem 277:24938–24948

    Article  Google Scholar 

  • Young JD (1978) Nucleoside transport in sheep erythrocytes: genetically controlled transport variation and its influence on erythrocyte ATP concentrations. J Physiol 277:325–339

    Google Scholar 

  • Young JD, Jarvis SM, Robins MJ, Paterson ARP (1983) Photoaffinity labelling of the human erythrocyte nucleoside transporter by N6-(p-azidobenzyl) adenosine and nitrobenzylthioinosine. Evidence that the transporter is a band 4.5 polypeptide. J Biol Chem 258:2202–2208

    Google Scholar 

  • Young JD, Paterson ARP, Henderson PJF (1985) Nucleoside transport and metabolism in erythrocytes from the Yucatan miniature pig. Evidence that inosine functions as an in vivo energy substrate. Biochim Biophys Acta 842:214–224

    Article  Google Scholar 

  • Young JD, Jarvis SM, Clanachan AS, Henderson JF, Paterson ARP (1986) Nitrobenzylthioinosine — an in vivo inhibitor of pig erythrocyte energy metabolism. Am J Physiol 251:C90-C94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Young, J.D., Yao, S.Y.M., Cass, C.E., Baldwin, S.A. (2003). Equilibrative Nucleoside Transport Proteins. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics