Atomic Structure of Surfaces with Adsorbates

  • K. Oura
  • M. Katayama
  • A. V. Zotov
  • V. G. Lifshits
  • A. A. Saranin
Part of the Advanced Texts in Physics book series (ADTP)


In studies of clean surfaces, the presence of any foreign species is absolutely undesirable. However, a large number of investigations concern surfaces on which a controlled amount of certain foreign atoms or molecules are intentionally added. The foreign species can be added to the surface in different ways, including condensation from vapor phase (adsorption), segregation from the sample bulk, or diffusion along the surface. Taking into account that adsorption is the most widely used technique, the added species is conventionally called the adsorbate. The material of the host surface is called the substrate. In the present chapter, the atomic structure of clean surfaces with adsorbates is discussed. The consideration is limited to adsorbate layers with an effective coverage of up to one atomic layer. Thus, multilayer thin films are beyond the scope of the chapter. Already formed (in most cases, equilibrium) structures are treated, while the dynamic processes involved in their formation will be discussed elsewhere.


Surface Phase Adsorbate Atom Substrate Atom Adsorbate Coverage Unit Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 9.1.
    J.M. Carpinelli, H.H. Weitering, E.W. Plummer: Charge Rearrangement in the Ge 1 Pb 1-x/Ge(111) Interface. Surf. Sci. 401, L457 (1998)CrossRefGoogle Scholar
  2. 9.2.
    A. Shibata, Y. Kimura, K. Takayanagi: On the Restructed Layer of the MATH-Ag Structure Studies by Scanning Tunneling Microscopy. Surf. Sci. 275, L697 (1992)CrossRefGoogle Scholar
  3. 9.3.
    D.W. McComb, R.A. Wolkow, P.A. Hackett: Defects on the Ag/Si(111)-(MATH) Surface. Phys. Rev. B 50, 18268 (1994)CrossRefGoogle Scholar
  4. 9.4.
    A.A. Saranin, A.V. Zotov, V.G. Lifshits, J.-T. Ryu, O. Kubo, H. Tani, T. Harada, M. Katayama, K. Oura: Ag-Induced Structural Transformations on Si(111): Quantitative Investigation of the Si Mass Transport. Surf. Sci. 429, 127 (1999)CrossRefGoogle Scholar
  5. 9.5.
    Y. Tanishiro, K. Takayanagi, K. Yagi: Density of Silicon Atoms in the MATH-Ag Structure Studied by in situ UHV Reflection Electron Microscopy. Surf. Sci. 258, L687 (1991)CrossRefGoogle Scholar
  6. 9.6.
    R.M. Tromp, T. Michely: Atomic-Layer Titration of Surface Reaction. Nature 373, 499 (1995)CrossRefGoogle Scholar
  7. 9.7.
    M. Nielsen, J.P. McTague, W. Ellenson: Adsorbed Layers of D 2 , H 2 , O 2 , and 3 He on Graphite Studied by Neutron Scattering. J. Physique 38, 10 (1977)Google Scholar
  8. 9.8.
    R. Imbihl, R.J. Behm, K. Christmann, G. Ertl, T. Matsushima: Phase Transitions of a Two-Dimensional System: H on Fe(110). Surf. Sci. 117, 257 (1982)CrossRefGoogle Scholar
  9. 9.9.
    H. Hirayama, S. Baba, A. Kinbara: Electron Energy Loss Measurements of In/Si(111) Superstructures: Correlation of the Spectra with Surface Superstructures. Appl. Surf. Sci. 33/34, 193 (1988)CrossRefGoogle Scholar
  10. 9.10.
    A.A. Saranin, A.V. Zotov, V.G. Lifshits, J.-T. Ryu, O. Kubo, H. Tani, T. Harada, M. Katayama, K. Oura: Analysis of Surface Structures through Determination of their Composition Using STM: Si(100)4×3-In and Si(111)4×1-In Reconstructions. Phys. Rev. B 60, 14372 (1999)CrossRefGoogle Scholar
  11. 9.11.
    A.A. Saranin, A.V. Zotov, A.N. Tovpik, M.A. Cherevik, E.N. Chukurov, V.G. Lifshits, M. Katayama, K. Oura: Composition and Atomic Structure of the MATH-In Surface. Surf. Sci. 450, 34 (2000)CrossRefGoogle Scholar
  12. 9.12.
    J. Kraft, M.G. Ramsey, F.P. Netzer: Surface Reconstructions of In on Si(111). Phys. Rev. B 55, 5384 (1997)CrossRefGoogle Scholar
  13. 9.13.
    P. Sprunger, F. Besenbacher, I. Stengaard: STM Study of the Ni(110)-2×1–2CO System: Structure and Bonding-Site Determination. Surf. Sci. 324, L321 (1995)CrossRefGoogle Scholar
  14. 9.14.
    C. Nagl, M. Pinczolits, M. Schmid, P. Varga: P(n×1) Superstructures of Pb on Cu(110). Phys. Rev. B 52, 16796 (1995)CrossRefGoogle Scholar
  15. 9.15.
    L. Lottermoser, T. Buslaps, R.L. Johnson, R. Feidenhans’l, M. Nielsen, D. Smilgies, E. Landemark, H.L. Meyerheim: Bismuth on Copper (110): Analysis of the c(2×2) and p(4×1) Structures by Surface X-ray Diffraction. Surf. Sci. 373, 11 (1997)CrossRefGoogle Scholar
  16. 9.16.
    H. Tochihara, S. Mizuno: Composite Surface Structures Formed by Restructuring-Type Adsorption of Alkali-Metals on fcc Netals. Progress Surf. Sci. 58, 1 (1998)CrossRefGoogle Scholar
  17. 9.17.
    M. Foss, R. Feidenhans’l, M. Nielsen, E. Findeisen, T. Buslaps, R.L. Johnson, F. Besenbacher, I. Stengaard: X-ray Diffraction Investigation of the Sulphur Induced 4×1 Reconstruction of Ni(110). Surf. Sci. 296, 283 (1993)CrossRefGoogle Scholar
  18. 9.18.
    J. Zegenhagen, J.R. Patel, RE. Freelanci, D.M. Chen, J.A. Golovchenko, P. Bedrossian, J.E. Northrup: X-ray Standing-Wave and Tunneling-Microscope Location of Gallium Atoms on a Silicon Surface. Phys. Rev. B 39, 1298 (1989)CrossRefGoogle Scholar
  19. 9.19.
    P. Mårtensson, G. Meyer, N.M. Amer, E. Kaxiras, K.C. Pandey: Evidence for Trimer Reconstruction of MATH-Sb: Scanning Tunneling Microscopy and First-Principles Theory. Phys. Rev. B 42, 7230 (1990)CrossRefGoogle Scholar
  20. 9.20.
    K. Spiegel: Untersuchungen zum Schichtwachstum von Silver auf der Silizium (111)-Oberflache Durch Beugung Langsamer Electronen. Surf. Sci. 7, 125 (1967)CrossRefGoogle Scholar
  21. 9.21.
    M. Katayama, R.S. Williams, M. Kato, E. Nomura, M. Aono: Structure Analysis of the MATH-Ag Surface. Phys. Rev. Lett. 66, 2762 (1991)CrossRefGoogle Scholar
  22. 9.22.
    T. Takahashi, S. Nakatani, N. Okamoto, T. Ishikawa: A Study of the MATH-Ag Surface by Transmission X-ray Diffraction and X-ray Diffraction Topography. Surf. Sci. 242, 54 (1991)CrossRefGoogle Scholar
  23. 9.23.
    K. Oura, J. Yamane, K. Umezawa, M. Naitoh, F. Shoji, T. Hanawa: Hydrogen Adsorption on Si(100)-2×1 Surfaces Studied by Elastic Recoil Detection Analysis. Phys. Rev. B 41, 1200 (1990)CrossRefGoogle Scholar
  24. 9.24.
    J.J. Boland: Role of Bond-Strain in the Chemistry of Hydrogen on the Si(100) Surface. Surf. Sci. 261, 17 (1992)CrossRefGoogle Scholar

Further Reading

  1. 1.
    V.G. Lifshits, A.A. Saranin, A.V. Zotov: Surface Phases on Silicon (John Wiley, Chichester 1994) (structures occurring at the adsorbate-covered Si surfaces)Google Scholar
  2. 2.
    G.A. Somorjai: Introduction to Surface Chemistry and Catalysis (John Wiley, New York 1994) Chapter 2 (vast list of structures occurring at clean crystal surfaces with adsorbates in tabular form with brief comments)Google Scholar
  3. 3.
    National Institute of Standards and Technology (NIST) Surface Structure Database (SSD), Version 3.0 (powerful graphics of SSD allow detailed assessment of atomic-scale structures of surfaces)
  4. 4.
    H.P. Bonzel (Ed.): Physics of Covered Solid Surfaces. Landolt-Börnstein. Vol. III/42. (Springer, Berlin, Heidelberg, New York 2001) (structures occurring on adsorbate-covered metal and semiconductor surfaces)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • K. Oura
    • 1
  • M. Katayama
    • 1
  • A. V. Zotov
    • 2
  • V. G. Lifshits
    • 3
  • A. A. Saranin
    • 3
  1. 1.Department of Electronic Engineering, Faculty of EngineeringOsaka UniversityOsakaJapan
  2. 2.Vladivostok State University of Economics and ServiceVladivostokRussia
  3. 3.Institute of Automation and Control ProcessesVladivostokRussia

Personalised recommendations