Growth of Thin Films

  • K. Oura
  • M. Katayama
  • A. V. Zotov
  • V. G. Lifshits
  • A. A. Saranin
Part of the Advanced Texts in Physics book series (ADTP)


When the adsorbate coverage exceeds the monolayer range, one speaks about thin film growth. The oriented growth of a crystalline film on a single-crystal substrate is referred to as epitaxy, which, in turn, is subdivided into homoepitaxy (when both film and substrate are of the same material) and heteroepitaxy (when film and substrate are different). The film growth is controlled by the interplay of thermodynamics and kinetics. The general trends in film growth are understood within the thermodynamic approach in terms of the relative surface and interface energies. On the other hand, film growth is a non-equilibrium kinetic process, in which the rate-limiting steps affect the net growth mode. In this chapter, the surface phenomena involved in thin film growth and their effect on the growth mode, as well as on the structure and morphology of the grown films, are discussed.


Growth Mode Island Size Island Growth Solid Phase Epitaxy Island Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 14.1
    J.G. Amar, F. Family, P.-M. Lam: Dinamic Scaling of the Island -Size Distribution and Percolation in a Model of Submonolayer Molecular-Beam Epitaxy. Phys. Rev. B 50, 8781 (1994)CrossRefGoogle Scholar
  2. 14.2
    J.A. Venables, G.D.T. Spiller, M. Hanbücken: Nucleation and Growth of Thin Films. Rep. Prog. Phys. 47, 399 (1984)CrossRefGoogle Scholar
  3. 14.3
    B. Müller, L. Nedelmann, B. Fischer, H. Brune, K. Kern: Initial Stages of Cu Epitaxy on Ni(100): Postnucleation and a Well-Defined Transition in Critical Island Size. Phys. Rev. B 54, 17858 (1996)CrossRefGoogle Scholar
  4. 14.4
    T.A. Witten Jr., L.M. Sander: Diffusion-Limited Agregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett. 47, 1400 (1981)CrossRefGoogle Scholar
  5. 14.5
    M. Hohage, M. Bott, M. Morgenstern, Z. Zhang, T. Michely, G. Comsa: Atomic Processes in Low Temperature Pt-Dendrite Growth on Pt(111). Phys. Rev. Lett. 76, 2366 (1996)CrossRefGoogle Scholar
  6. 14.6
    M. Bott, T. Michely, G. Comsa: The Homoepitaxial Growth of Pt on Pt(111) Studied with STM. Surf. Sci. 272, 161 (1992)CrossRefGoogle Scholar
  7. 14.7
    T. Michely, G. Comsa: Temperature Dependence of the Sputtering Morphology of Pt(111). Surf. Sci. 256, 217 (1991)CrossRefGoogle Scholar
  8. 14.8
    T. Michely: Atomare Prozesse bei der Pt-Abscheidung auf Pt(111). Habilitationsschrift, Bonn (1996)Google Scholar
  9. 14.9
    J.A. Stroscio, D.T. Pierce, R.A. Dragoset: Homoepitaxial Growth of Iron and a Real Space View of Reflection-High-Energy-Electron Diffraction. Phys. Rev. Lett. 70, 3615 (1993)CrossRefGoogle Scholar
  10. 14.10
    M.Y. Lai, Y.L. Wang: Direct Observation of Two Dimensional Magic Clusters. Phys. Rev. Lett. 81, 164 (1998)CrossRefGoogle Scholar
  11. 14.11
    B. Voigtländer, M. Kästner, P. Smilauer: Magic Islands in Si/Si(111) Homoepitaxy. Phys. Rev. Lett. 81, 858 (1998)CrossRefGoogle Scholar
  12. 14.12
    G. Rosenfeld, K. Morgenstern, M. Esser, G. Comsa: Dinamics and Stability of Nano structures on Metal Surfaces. Appl. Phys. A 69, 489 (1999)CrossRefGoogle Scholar
  13. 14.13
    G. Ehrlich, F.G. Hudda: Atomic View of Surface Self-Diffusion: Tungsten on Tungsten. J. Chem. Phys. 44, 1039 (1966)CrossRefGoogle Scholar
  14. 14.14
    R.L. Schwoebel, E.J. Shipsey: Step Motion on Crystal Surfaces. J. Appl. Phys. 37, 3682 (1966)CrossRefGoogle Scholar
  15. 14.15
    G. Rosenfeld, B. Poelsema, G. Comsa: ‘Epitaxial Growth Modes Far from Equilibrium’. In: The Chemical Physics of Solid Surfaces. Vol. 8. Growth and Properties of Ultrathin Epitaxial Layers, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam 1997) pp. 66–101CrossRefGoogle Scholar
  16. 14.16
    R. People, J.C. Bean: Calculation of Critical Layer Thickness Versus Lattice Mismatch for Ge x Si 1-x/Si Strained-Layer Heteroepitaxy. Appl. Phys. Lett. 47, 322 (1985)CrossRefGoogle Scholar
  17. 14.17
    A.V. Zotov, V.V. Korobtsov: Present Status of Solid Phase Epitaxy of Vacuum-Depo sited Silicon. J. Cryst. Growth 98, 519 (1989)CrossRefGoogle Scholar
  18. 14.18
    N. Pütz, E. Veuhoff, H. Heinecke, M. Heyen, H. Lüth, P. Balk: GaAs Growth in Metal-Organic MBE. J. Vac. Sci. Technol. B 3, 671 (1983)CrossRefGoogle Scholar
  19. 14.19
    D.J. Eaglesham, F.C. Unterwald, D.C. Jacobson: Growth Morphology and the Equilibrium Shape: The Role of “Surfactants” in Ge/Si Island Formation. Phys. Rev. Lett. 70, 966 (1993)CrossRefGoogle Scholar
  20. 14.20
    K. Sumitomo, T. Kobayashi, F. Shoji, K. Oura, I. Katayama: Hydrogen-Mediated Epitaxy of Ag on Si(111) as Studied by Low-Energy Ion Scattering. Phys. Rev. Lett. 66, 1193 (1991)CrossRefGoogle Scholar
  21. 14.21
    P. Zahl, P. Kury, M. Horn-von Hoegen: Interplay of Surface Morphology, Strain Relief, and Surface Stress During Surfactant Mediated Epitaxy of Ge on Si. Appl. Phys. A 69, 481 (1999)CrossRefGoogle Scholar
  22. 14.22
    H.A. Van Der Vegt, J. Vrijmoeth, R.J. Behm, E. Vlieg: Sb-Enhanced Nucleation in the Homoepitaxial Growth of Ag(111). Phys. Rev. B 57, 4127 (1998)CrossRefGoogle Scholar
  23. 14.23
    H. Brune, G.S. Bales, J. Jacobsen, C. Boragno, K. Kern: Measuring Surface Diffusion from Nucleation Island Density. Phys. Rev. B 60, 5991 (1999)CrossRefGoogle Scholar

Further Reading

  1. 1.
    B. Lewis, J.C. Anderson: Nucleation and Growth of Thin Films (Academic Press, New York 1978) (solution of nucleation rate equations for various cases)Google Scholar
  2. 2.
    J.A. Venables, G.D.T. Spiller, M. Hanbücken: Nucleation and Growth of Thin Films. Rep. Prog. Phys. 47, 399–459 (1984) (nucleation rate theory in great detail)CrossRefGoogle Scholar
  3. 3.
    H. Brune: Microscopic View of Epitaxial Metal Growth: Nucleation and Aggregation. Surf. Sci. Rep. 31, 121–229 (1998) (applications of the nucleation rate theory and Monte Carlo simulations for island growth)Google Scholar
  4. 4.
    J.G. Amar, F. Family: Kinetics of Submonolayer and Multilayer Epitaxial Growth. Thin Solid Films 272, 208–222 (1996) (introduction to scaling theory of island growth)CrossRefGoogle Scholar
  5. 5.
    M. Giesen: Step and Island Dynamics at Solid/Vacuum and Solid/Liqued Interfaces. Prog. Surf. Sci. 68, 1–153 (2001) (equilibrium island shape, island ripening, and coalescence in detail)CrossRefGoogle Scholar
  6. 6.
    M.A. Herman, H. Sitter: Molecular Beam Epitaxy: Fundamentals and Current Status, 2nd ed. (Springer, Berlin 1996)CrossRefGoogle Scholar
  7. 7.
    J.R. Arthur: Molecular Beam Epitaxy. Surf. Sci. 500, 189–217 (2002)CrossRefGoogle Scholar
  8. 8.
    G.L. Olson, J.A. Roth: Kinetics of Solid Phase Crystallization in Amorphous Silicon. Mater. Sci. Rep. 3, 1–78 (1988)CrossRefGoogle Scholar
  9. 9.
    A.V. Zotov, V.V. Korobtsov: Present Status of Solid Phase Epitaxy of Vacuum-Depo sited Silicon. J. Cryst. Growth 98, 519–530 (1988)CrossRefGoogle Scholar
  10. 10.
    H. Lüth: Chemical Beam Epitaxy — A Child of Surface Science. Surf. Sci. 299/300, 867–877 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • K. Oura
    • 1
  • M. Katayama
    • 1
  • A. V. Zotov
    • 2
  • V. G. Lifshits
    • 3
  • A. A. Saranin
    • 3
  1. 1.Department of Electronic Engineering, Faculty of EngineeringOsaka UniversityOsakaJapan
  2. 2.Vladivostok State University of Economics and ServiceVladivostokRussia
  3. 3.Institute of Automation and Control ProcessesVladivostokRussia

Personalised recommendations