Electronic Structure of Surfaces

  • K. Oura
  • M. Katayama
  • A. V. Zotov
  • V. G. Lifshits
  • A. A. Saranin
Part of the Advanced Texts in Physics book series (ADTP)


By breaking the 3D periodicity of the crystal bulk, a surface modifies strongly the electronic structure in its vicinity. Additional modification is introduced by surface reconstruction. The modification concerns the charge density redistribution in the near-surface region and the formation of specific electronic states, called surface states. The electronic structure manifests itself in the surface properties, like the surface conductivity and work function.


Surface State Work Function Space Charge Layer Contact Potential Difference Bulk Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 11.1
    P. Hohenberg, W. Kohn: Inhomogeneous Electron Gas. Phys. Rev. 136, B864 (1964)CrossRefGoogle Scholar
  2. 11.2
    W. Kohn, L.J. Sham: Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  3. 11.3
    N.D. Lang, W. Kohn: Theory of Metal Surfaces: Charge Density and Surface Energy. Phys. Rev. B 1, 4555 (1970)CrossRefGoogle Scholar
  4. 11.4
    M.F. Crommie, C.P. Lutz, D.M. Eigler: Imaging Standing Waves in a Two-Dimensional Electron Gas. Nature 363, 524 (1993)CrossRefGoogle Scholar
  5. 11.5
    N.D. Lang, W. Kohn: Theory of Metal Surfaces: Work Function. Phys. Rev. B 3, 1215 (1971)CrossRefGoogle Scholar
  6. 11.6
    S.D. Kevan: Evidence for a New Broadening Mechanism in Angle-Resolved Photoemission from Cu(111). Phys. Rev. Lett. 50, 526 (1983)CrossRefGoogle Scholar
  7. 11.7
    S.L. Hulbert, P.D. Johnson, N.G. Stoffel, W.A. Royer, N.V. Smith: Crystal-Induced and Image-Potential-Induced Empty Surface States on Cu(111) and Cu(001). Phys. Rev. B 31, 6815 (1985)CrossRefGoogle Scholar
  8. 11.8
    R.I.G. Uhrberg, G.V. Hansson, J.M. Nicholls, S.A. Flodström: Experimental Evidence for One Highly Dispersive Dangling-Bond Band on Si(111)2×1. Phys. Rev. Lett. 48, 1032 (1982)CrossRefGoogle Scholar
  9. 11.9
    F.J. Himpsel, P. Heimann, D.E. Eastman: Surface States on Si(111)-2×1. Phys. Rev. B 24, 2003 (1981)Google Scholar
  10. 11.10
    P. Perfetti, J.M. Nicholls, B. Reihl: Unoccupied Surface-State Band on Si(111)2×1. Phys. Rev. B 36, 6160 (1987)CrossRefGoogle Scholar
  11. 11.11
    K.C. Pandey: Theory of Semiconductor Surface Reconstruction: Si(111)-7×7, Si(111)-2×1, and GaAs (110). Physica B 117/118, 761 (1983)CrossRefGoogle Scholar
  12. 11.12
    P. Mårtensson, W.-X. Ni, G.V. Hansson: Surface Electronic Structure of Si(111)7×7-Ge and Si(111)5×5-Ge Studied with Photoemission and Inverse Photoemission. Phys. Rev. B 36, 5974 (1987)CrossRefGoogle Scholar
  13. 11.13
    R.I.G. Uhrberg, T. Kaurila, Y.-C. Chao: Low-Temperature Photoemission Study of the Surface Electronic Structure of Si(111)7×7. Phys. Rev. B 58, R1730 (1998)CrossRefGoogle Scholar
  14. 11.14
    R.J. Hamers, R.M. Tromp, J.E. Demuth: Surface Electronic Structure of Si(111)-(7×7) Resolved in Real Space. Phys. Rev. Lett. 56, 1972 (1986)CrossRefGoogle Scholar
  15. 11.15
    F.J. Himpsel: Inverse Photoemission from Semiconductors. Surf. Sci. Rep. 12, 1 (1990)CrossRefGoogle Scholar
  16. 11.16
    R. Wolkow, Ph. Avouris: Atom-Resolved Surface Chemistry Using Scanning Tunneling Microscopy. Phys. Rev. Lett. 60, 1049 (1988)CrossRefGoogle Scholar
  17. 11.17
    F.J. Himpsel: ‘Experimental Probes of the Surface Electronic Structure’. In: Handbook of Surf. Sci.. Vol. 2. Electronic Structure, ed. by K. Horn, M. Scheffler (Elsevier, Amsterdam 2000)Google Scholar
  18. 11.18
    R. Losio, K.N. Altmann, F.J. Himpsel: Fermi Surface of Si(111)7×7. Phys. Rev. B 61, 10845 (2000)CrossRefGoogle Scholar
  19. 11.19
    R.I.G. Uhrberg, R.D. Bringans, M.A. Olmstead, R.Z. Bachrach, J.E. Northrup: Electronic Structure, Atomic Structure and Passivated Nature of the Arsenic-Terminated Si(111) Surface. Phys. Rev. B 35, 3945 (1987)CrossRefGoogle Scholar
  20. 11.20
    M.S. Hybertsen, S.G. Louie: Theory of Quasiparticle Surface States in Semiconductor Surfaces. Phys. Rev. B 38, 4033 (1988)CrossRefGoogle Scholar
  21. 11.21
    T. Kinoshita, S. Kono, T. Sagawa: Angle-Resolved Photoelectron-Spectroscopy Study of the Si(111) MATH-Sn Surface: Comparison with Si(111) MATH-Al, -Ga, and -In Surfaces. Phys. Rev. B 34, 3011 (1986)CrossRefGoogle Scholar
  22. 11.22
    J.M. Nicholls, P. Martensson, G.V. Hansson, J.E. Northrup: Surface States on MATH-In: Experiment and Theory. Phys. Rev. B 32, 1333 (1985)CrossRefGoogle Scholar
  23. 11.23
    J.M. Nicholls, B. Reihl, J.E. Northrup: Unoccupied Surface States Revealing the MATH-Al, -Ga, and -In Adatom Geometries. Phys. Rev. B 35, 4137 (1987)CrossRefGoogle Scholar
  24. 11.24
    F. Bauerle, W. Monch, M. Henzler: Correlation of Electronic Surface Properties and Surface Structure on Cleaved Silicon Surfaces. J. Appl. Phys. 43, 3917 (1972)CrossRefGoogle Scholar
  25. 11.25
    I. Shiraki, F. Tanabe, R. Hobara, T. Nagao, S. Hasegawa: Independently Driven Four-Tip Probes for Conductivity Measurements in Ultrahigh Vacuum. Surf. Sci. 493, 633 (2001)CrossRefGoogle Scholar
  26. 11.26
    I. Shiraki, T. Nagao, S. Hasegawa, C.L. Petersen, P. Böggild, T.M. Hansen, F. Grey: Micro-Four-Point Probes in a UHV Scanning Tunneling Microscope for in situ Surface-Conductivity Measurements. Surf. Rev. Lett. 7, 533 (2000)Google Scholar
  27. 11.27
    S. Hasegawa, F. Grey: Electronic Transport at Semiconductor Surfaces -from Point-Contact Transistor to Micro-Four-Point Probes. Surf. Sci. 500, 84 (2002)CrossRefGoogle Scholar
  28. 11.28
    S. Hasegawa, I. Shiraki, Y. Tanigawa, CL. Petersen, F. Grey: Measurement of Surface Electron Conductivity Using Micro 4-Probe. Kotai Butsuri (Solid State Phys.) 37, 299 (2002)Google Scholar
  29. 11.29
    K. Jakobi: ‘Electronic Structure of Surfaces: Metals’. In: Physics of Solid Surfaces. Landolt Börnstein III/24b. ed. by G. Chiarotti (Springer, Berlin, Heidelberg, New York 1993) pp. 29–351Google Scholar
  30. 11.30
    P.J. Goddard, R.M. Lambert: Adsorption-Desorption Properties and Surface Structural Chemistry of Chlorine on Cu(111) and Ag(111). Surf. Sci. 67, 180 (1977)CrossRefGoogle Scholar
  31. 11.31
    S.A. Lindgren, L. Walldén: Electronic Structure of Clean and Oxygen-Exposed Na and Cs Monolayers on Cu(111). Phys. Rev. B 22, 5967 (1980)CrossRefGoogle Scholar
  32. 11.32
    E.W. Müller: Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope. J. Appl. Phys. 26, 732 (1955)CrossRefGoogle Scholar
  33. 11.33
    G.F. Smith: Thermionic and Surface Properties of Tungsten Crystal. Phys. Rev. 94, 295 (1954)CrossRefGoogle Scholar
  34. 11.34
    R.H. Fowler: The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures. Phys. Rev. 38, 45 (1931)CrossRefGoogle Scholar
  35. 11.35
    P.O. Gartland, S. Berge, B.J. Slagsvold: Photoelectric Work Function of a Copper Single Crystal for the (100), (110), (111), and (112) Faces. Phys. Rev. Lett. 28, 738 (1972)CrossRefGoogle Scholar

Further Reading

  1. 1.
    S.G. Davison, M. Stęślicka: Basic Theory of Surface States (Oxford University Press, Oxford 1992) (theory of Tamm states in detail)Google Scholar
  2. 2.
    K. Horn, M. Scheffler (Ed.): Electronic Structure. Handbook of Surface Science. Vol. 2. (Elsevier, Amsterdam 2000) (set of reviews on various aspects of surface electronic structure of metals and semiconductors)Google Scholar
  3. 3.
    S. Hasegawa, F. Grey: Electronic Transport at Semiconductor Surfaces-From Point-Contact Transistor to Micro-Four-Point Probes. Surf. Sci. 500, 84–104 (2002) (discussion on the measurements of surface conductivity)CrossRefGoogle Scholar
  4. 4.
    J. Hölzl, F.K. Schulte: ‘Work Function of Metals’. In: Solid State Physics. Springer Tracts in Modern Physics. Vol.85 (Springer, Berlin, Heidelberg, New York 1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • K. Oura
    • 1
  • M. Katayama
    • 1
  • A. V. Zotov
    • 2
  • V. G. Lifshits
    • 3
  • A. A. Saranin
    • 3
  1. 1.Department of Electronic Engineering, Faculty of EngineeringOsaka UniversityOsakaJapan
  2. 2.Vladivostok State University of Economics and ServiceVladivostokRussia
  3. 3.Institute of Automation and Control ProcessesVladivostokRussia

Personalised recommendations