Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 163))

Abstract

Within terrestrial ecosystems, the soil C02 efflux is one of the largest carbon flux components. The global efflux of carbon from the soil is estimated between 50 and 75 Gt C year-1 and makes up 20–40 % of the total annual input of carbon dioxide into the atmosphere (Houghton and Woodwell 1989; Raich and Schlesinger 1992; Schimel 1995). The magnitude of the soil flux is similar to that of the net primary productivity (Houghton and Woodwell 1989). It has been suggested that as global temperature rises, enhanced decomposition of the large soil carbon stock (1580 x 1015 g; Schimel 1995), especially in the high northern latitudes, might increase the input of carbon into the atmosphere (Gordon et al. 1987; Kirschbaum 1995; Trumbore et al. 1996; Zimov et al. 1996). However, the effect of a temperature increase on the decomposition rate is still unsolved and a point of discussion. Others suggest that decomposition rates in forest soils are not controlled by temperature (Liski et al. 1999; Giardina and Ryan 2000). Besides the potential temperature-induced feedback, changes in land use and forest management, which do affect the storage of carbon in the soil, were important points of discussion throughout the negotiations of the Kyoto protocol. Therefore, understanding the processes underlying the exchange of carbon from and into the soil is needed to make “management of the net carbon budget” possible (IGBP Terrestrial Carbon Working Group 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren Gl, Bosatta E (1987) Theoretical analysis of long-term dynamics of carbon and nitrogen in soils. Ecology 68:1181–1189

    Article  Google Scholar 

  • Ågren GI, Bosatta E (1996a) Theoretical ecosystem ecology; understanding element cycles. Cambridge Univ Press, Cambridge, 234 pp

    Google Scholar 

  • Ågren GI, Bosatta E (1996b) Quality: a bridge between theory and experiment in soil organic matter studies. Oikos 76:522–528

    Article  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin P, Berbigier P, Bernhofer C, Clement R, Elbers I, Granier A, Gruenwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Article  CAS  Google Scholar 

  • Baldocchi DD, Meyers TP (1991) Trace gas exchange above the floor of a deciduous forest. 1. Evaporation and C02 efflux. J Geophys Res 96(D4):7271–7285

    Article  CAS  Google Scholar 

  • Baldocchi DD, Vogel CA, Hall B (1997) Seasonal variation of carbon dioxide exchange rate above and below a boreal jack pine forest. Agric For Meteorol 83:147–170

    Article  Google Scholar 

  • Billings SA, Richter DD, Yarie J (1998) Soil carbon dioxide fluxes and profile concentrations in two boreal forests. Can J For Res 28:1773–1783

    Article  Google Scholar 

  • Bonan GB (1992) Physiological controls of the carbon balance of boreal forest eceosys-tems. Can J For Res 23:1453–1471

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Article  CAS  Google Scholar 

  • Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted ther mo dynamically. Soil Biol Biochem 31:1889–1891

    Article  CAS  Google Scholar 

  • Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can J For Res 23:1402–1407

    Article  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors modulating soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635

    Article  CAS  Google Scholar 

  • Burton DL, Beauchamp EG (1994) Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing. Soil Sci Soc Am J 58:115–122

    Article  CAS  Google Scholar 

  • Burton AJ, Zogg GP, Pregitzer KS, Zak DR (1997) Effect of measurement C02 concentration on sugar maple root respiration. Tree Physiol 17:421–427

    Article  PubMed  CAS  Google Scholar 

  • Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1998) Drought reduces root respiration in sugar maple forests. Ecol Appl 8:771–778

    Article  Google Scholar 

  • Conen F, Smith KA (2000) An explanation of linear increases in gas concentration under closed chamber used to measure gas exchange between soil and the atmosphere. Eur J Soil Sci 51:111–117

    Article  CAS  Google Scholar 

  • Denmead OT (1979) Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Sci Soc Am J 43:89–95

    Article  CAS  Google Scholar 

  • Dore S (1999) Functional characteristics of carbon balance and energy use in forest ecosystems: comparison between three study cases. PhD Thesis. Universita degli Studi di Padova (in Italian)

    Google Scholar 

  • Edwards NT (1982) The use of soda-lime for measuring respiration rates in terrestrial ecosystems. Pedobiologia 23:231–330

    Google Scholar 

  • Edwards NT, Sollins P (1973) Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology 54:406–412

    Article  CAS  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P-M (1999a) Soil C02 efflux in a beech forest: the dependence on soil temperature and soil water content. Ann For Sci 56:221–226

    Article  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P-M (1999b) Soil C02 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56:289–295

    Article  Google Scholar 

  • Fahnestock JT, Jones MH, Brooks PD, Walker DA, Welker JM (1998) Winter and early spring C02 efflux from tundra communities of northern Alaska. J Geophys Res 103:29023–29027

    Article  CAS  Google Scholar 

  • Fang C, Moncrieff JB (1996) An improved dynamic chamber technique for measuring C02 efflux from the surface of soil. Funct Ecol 10(2):297–305

    Article  Google Scholar 

  • Fang C, Moncrieff JB (1999a) A model for soil C02 production and transport 1: model development. Agric For Meteorol 95:225–236

    Article  Google Scholar 

  • Fang C, Moncrieff JB (1999b) A model for soil C02 production and transport 2: application to a Florida Pinus elliotte plantation. Agric For Meteorol 95:237–256

    Article  Google Scholar 

  • Fisher FM, Gosz JR (1986) Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest. Biol Fertil Soils 2:35–42

    Article  Google Scholar 

  • Freijer JI, Leffelaar PA (1996) Adapted Fick’s law applied to soil respiration. Water Resour Res 32(4):791–800

    Article  CAS  Google Scholar 

  • Gansert D (1994) Root respiration and its importance for the carbon balance of beech seedlings (Fagus sylvatica L.) in a montane beech forest. Plant Soil 167:109–119

    Article  CAS  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Schlentner RE, Van Cleve K (1987) Seasonal patterns of soil respiration and C02 evolution following harvesting in the white spruce forests of interior Alaska. Can J For Res 17:304–310

    Article  Google Scholar 

  • Goulden ML, Crill PM (1997) Automated measurements of C02 exchange at the moss surface of a black spruce forest. Tree Physiol 17:537–542

    Article  PubMed  CAS  Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by deciduous forest: response to inter-annual climate variability. Science 271:1576–1578

    Article  CAS  Google Scholar 

  • Grogan P (1998) C02 flux measurements using soda lime: correction for water formed during C02 absorption. Ecology 79:1467–1468

    Article  Google Scholar 

  • Grogan P, Illeris L, Michelsen A, Johasson S (2001) Respiration of recently-fixed plant carbon dominates mid-winter ecosystem C02 production in sub-arctic heath tundra. Climatic Change 50:129–142

    Article  CAS  Google Scholar 

  • Hart SC, Sollins P (1998) Soil carbon and nitrogen pools and processes in an old-growth conifer forest 13 years after trenching. Can J For Res 28:1261–1265

    Article  Google Scholar 

  • Hanson PJ, Wullschleger SD, Bohlman SA, Todd DE (1993) Seasonal and topographic patterns of forest floor C02 efflux from an upland oak forest. Tree Physiol 13:1–15

    Article  PubMed  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeo-chemistry 48:115–146

    Article  CAS  Google Scholar 

  • Helal HM, Sauerbeck D (1991) Short-term determination of the actual respiration rate of intact plant roots. In: McMichael BF, Persson H (eds) Plant roots and their environment. Elsevier, London, pp 88–92

    Chapter  Google Scholar 

  • Högberg P, Ekblad A (1996) Substrate-induced respiration measured in situ in a C3-plant ecosystem using additions of C4-sucrose. Soil Biol Biochem 28:1131–1138

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DH (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Horwath WR, Pregitzer KS, Paul EA (1994) 14C allocation in tree-soil systems. Tree Physiol 14:1163–1176

    Article  PubMed  Google Scholar 

  • Houghton RA, Woodwell GM (1989) Global climatic change. Sci Am 260:18–26

    Article  Google Scholar 

  • Howard PJA (1966) A method for the estimation of carbon dioxide evolved from the surface of soil in the field. Oikos 17:267–271

    Article  CAS  Google Scholar 

  • Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurements of nitrous oxide fluxes. Soil Sci Soc Am J 45:311–316

    Article  CAS  Google Scholar 

  • Hyvönen R, Âgren GI, Andren O (1996) Modelling long-term carbon and nitrogen dynamics in an arable soil receiving organic matter. Ecol Appl 6(4):1345–1354

    Article  Google Scholar 

  • IGBP Terrestrial Carbon Working Group (1998) The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280:1393–1394

    Article  Google Scholar 

  • Ilvesniemi H, Pumpanen J (1997) SMEARII station for measuring forest ecosystem-atmosphere relation. In: Haataja J, Vesala T (eds) University of Helsinki Department of Forest Ecology Publications 17. University of Helsinki, Helsinki, pp 30–37

    Google Scholar 

  • Iritz Z, Lindroth A, Gärdenäs A (1997) Open ventilated chamber system for measurements of H20 and C02 fluxes from the soil surface. Soil Technol 10:169–184

    Article  Google Scholar 

  • Janssens IA (1999) Soil C02 efflux in a mixed forest ecosystem in the Antwerp Campine region. PhD Thesis, Universiteit Antwerpen (UIA)

    Google Scholar 

  • Janssens IA, Ceulemans R (1998) Spatial variability in forest soil C02 efflux assessed with a calibrated soda lime technique. Ecol Lett 1:95–98

    Article  Google Scholar 

  • Janssens IA, Kowalski AS, Longdoz B, Ceulemans R (2000) Assessing forest soil C02 efflux: an in situ comparison of four techniques. Tree Physiol 20:23–32

    Article  PubMed  Google Scholar 

  • Janssens I, Kowalski A, Ceulemans R (2001) Forest floor C02 fluxes estimated by eddy covariance and chamber-based model. Agric For Meteorol 106:61–69

    Article  Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philos Trans R Soc Lond B 329:361–368

    Article  CAS  Google Scholar 

  • Jenkinson DS (1991) Model estimates of C02 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Joffre R, Âgren GI, Gillon D, Bosatta E (2001) Organic matter quality in ecological studies: theory meets experiment. Oikos 93:451–458

    Article  CAS  Google Scholar 

  • Kanemasu ET, Powers WL, Sij JW (1974) Field chamber measurements of C02 flux from soil surface. Soil Sci 118:233–237

    Article  CAS  Google Scholar 

  • Keith H, Jacobsen KL, Raison RJ (1997) Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 190:127–141

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27(6):753–760

    Article  CAS  Google Scholar 

  • Kleber M, Stahr K (1995) Soil carbon turnover in subalpine systems and its dependence on climate. In: Zwerver S, van Rompaey RSAR, Kok MTJ, Berk MM (eds) Climate change research: evaluation and policy implications. Elsevier, Amsterdam, pp 561–566

    Chapter  Google Scholar 

  • Kutsch WL (1996) Untersuchungen zur Bodenatmung zweier Ackerstandorte im Bereich der Bornhöveder Seenkette. EcoSyst Suppl 16:1–125

    Google Scholar 

  • Landsberg JJ, Gower ST (1997) Applications of physiological ecology to forest management. Academic Press, San Diego, 354 pp

    Google Scholar 

  • Lavigne MB, Ryan MG, Anderson DE, Baldocchi DD, Crill PM, Fitzjarrald DR, Goulden ML, Gower ST, Massheder JM, McCaughey JH, Ray ment M, Striegl RG (1997) Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. J Geophys Res 102(D24):28,977–28,985

    Article  CAS  Google Scholar 

  • Law B, Baldocchi D and Anthoni P (1999) Below-canopy and soil C02 fluxes in a pon-derosa pine forest. Agric For Meteorol, 94:171–188

    Article  Google Scholar 

  • Le Dantec V, Epron D, Dufrêne E (1999) Soil C02 efflux in a beech forest: comparison of two closed dynamic systems. Plant Soil 214:125–132

    Article  Google Scholar 

  • Li-Cor (1993) LI-6000–09 Soil respiration chamber, instruction manual. Publication no 9311–69. Li-Cor, Inc Lincoln, NE, USA

    Google Scholar 

  • Lin G, Ehleringer JR, Rygiewicz PT, Johnson MG, Tingey DT (1999) Elevated C02 and temperature impacts on different components of soil C02 efflux in Douglas-fir terra-cosms. Global Change Biol 5:157–168

    Article  Google Scholar 

  • Lindroth A, Grelle A, Morén AS (1998) Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol 4:443–450

    Article  Google Scholar 

  • Liski J (1997) Carbon storage of forest soils in Finland. University of Helsinki Department of Forest Ecology Publication 16. University of Helsinki, Helsinki

    Google Scholar 

  • Liski J, Ilves-niemi H, Mäkelä A, Westman CJ (1999) C02 emissions from soil in response to climate warming are overestimated — the decomposition of old organic matter is tolerant to temperature. Ambio 28:171–174

    Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Longdoz B, Yernaux M, Aubinet M (2000) Soil C02 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biol 6:907–917

    Article  Google Scholar 

  • Lund CP, Riley WJ, Pierce LL, Field CB (1999) The effects of chamber pressurization on soil-surface C02 flux and the implications for NEE measurements under elevated C02. Global Change Biol 5:269–281

    Article  Google Scholar 

  • Lundegârdh H (1927) Carbon dioxide evolution of soil and crop growth. Soil Sci 23:417–453

    Article  Google Scholar 

  • Matteucci G, Dore S, Stivanello S, Rebmann C, Buchmann N (2000) Soil respiration in beech and spruce forest in Europe: trends, controlling factors, annual budgets and implications for the ecosystem carbon balance. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystem. Ecological studies 142. Springer, Berlin Heidelberg New York, pp 217–236

    Chapter  Google Scholar 

  • Moncrieff JB, Mahli Y, Leuning R (1996) The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biol 2:231–240

    Article  Google Scholar 

  • Monteith JL, Szeicz G, Yabuki K (1964) Crop photosynthesis and the flux of carbon dioxide below the canopy. J Appl Ecol 1:321–337

    Article  CAS  Google Scholar 

  • Morén AS, Lindroth A (1998) Field measurements of water vapour and carbon dioxide fluxes — chamber system and climatic monitoring by an automatic station. Report 4. Department for Production Ecology, Faculty of Forestry, SLU, Uppsala, Sweden

    Google Scholar 

  • Nay SM, Mattson KG, Bormann BT (1994) Biases of chamber methods for measuring soil C02 efflux demonstrated with a laboratory apparatus. Ecology 75(8):2460–2463

    Article  Google Scholar 

  • Nakane K, Kohno T, Horikoshi T (1996) Root respiration rate before and just after clear-felling in a mauture, deciduous, broad-leaved forest. Ecol Res 11:111–119

    Article  Google Scholar 

  • Norman JM, Garcia R, Verma SB (1992) Soil surface C02 fluxes and the carbon budget of a grassland. J Geophys Res 97:18845–18853

    Article  Google Scholar 

  • Norman JM, Kucharik CJ, Gower ST, Baldocchi DD, Crill PM, Rayment M, Savage K, Striegl RG (1997) A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J Geophys Res 102:28771–28777

    Article  CAS  Google Scholar 

  • Oechel WC, Vourlitis G, Hastings SJ (1997) Cold season C02 emission from arctic soils. Global Biogeochem Cycles 11:163–172

    Article  CAS  Google Scholar 

  • Parkinson KJ (1981) An improved method for measuring soil respiration in the field. J Appl Ecol 18:221–228

    Article  Google Scholar 

  • Persson T, Lundkvist H, Wirén A, Hyvönen R, Wessen B (1989) Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus. Water Air Soil Pollut 44:77–96

    Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4(3):617–625

    Article  Google Scholar 

  • Pumpanen J, Ilvesniemi H, Keronen P, Nissinen A, Pohja T, Vesala T, Hari P (2001) An open chamber system for measuring soil surface C02 efflux: analysis of error sources related to the chamber system. J Geophys Res Atmos 106(D8):7985–7992

    Article  CAS  Google Scholar 

  • Qi J, Marshall JD, Mattson KG (1994) High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol 128:435–442

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    CAS  Google Scholar 

  • Rayment MB (2000) Investigating the role of soils in terrestrial carbon balance — harmonising methods for measuring soil C02 efflux. LESC Exploratory workshop, Edinburgh, 6–8 April. European Science Foundation, http://www.esf.org/generic/163/2073 aappitem5.1a.pdf

    Google Scholar 

  • Rayment MB, Jarvis PG (1997) An improved open chamber system for measuring soil C02 effluxes in the field. J Geophys Res 102(D24):28,779–28,784

    Article  CAS  Google Scholar 

  • Rochette P, Ellert B, Gregorich EG, Desjardins RL, Pattey E, Lessard R, Johnson BG (1997) Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J Soil Sci 77:195–203

    Article  Google Scholar 

  • Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol 16:333–343

    Article  PubMed  Google Scholar 

  • Ryan MG, Lavigne MB, Gower ST (1997) Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res 102 (D24):28.871–28.883

    Article  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol 1:77–91

    Article  Google Scholar 

  • Simùnek J, Suarez DL (1993a) Modelling of carbon dioxide transport and production in soil. 1. Model development. Water Resour Res 29(2):487–497

    Article  Google Scholar 

  • Simùnek J, Suarez DL (1993b) Modelling of carbon dioxide transport and production in soil. 2. Parameter selection, sensitivity analysis, and comparison of model predictions to field data. Water Resour Res 29(2):499–513

    Article  Google Scholar 

  • Schwartzkopf SH (1978) An open chamber technique for the measurement of carbon dioxide evolution from soils. Ecology 59:1062–1068

    Article  CAS  Google Scholar 

  • Swinnen J, van Veen JA, Merckx R (1994) Rhizosphere carbon fluxes in field-grown spring wheat: model calculations based on 14C partitioning after pulse-labelling. Soil Biol Biochem 26:171–182

    Article  Google Scholar 

  • Tate KR, Ross DJ, O’Brien BJ, Kelliher FM (1993) Carbon storage and turnover, and respiratory activity, in the litter and soil of an old-growth southern beech (Nothofagus) forest. Soil Biol Biochem 25:1601–1612

    Article  Google Scholar 

  • Thierron V, Laudelout H (1996) Contribution of root respiration to total C02 efflux from the soil of a deciduous forest. Can J For Res 26:1142–1148

    Article  Google Scholar 

  • Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272(5260): 393–396

    Article  CAS  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol 106:85–100

    Article  Google Scholar 

  • Widen B, Lindroth A (2002) A calibration system for soil C02 efflux chamber systems: description and application. Soil Sci Soc Am J (in press)

    Google Scholar 

  • Widen B, Majdi H (2000) Soil C02 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Can J For Res 31:786–796

    Article  Google Scholar 

  • Witkamp M, Frank ML (1969) Evolution of C02 from litter, humus and subsoil of a pine stand. Pedobiologia 9:358–365

    Google Scholar 

  • Zimov SA, Davidov SP, Voropaev V, Prosiannikov SF, Semiletov IP, Chapin MC, Chapin FS 1996) Siberian C02 efflux in winter as a C02 source and cause of seasonality in atmospheric C02. Climatic Change 33:111–120

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lankreijer, H., Janssens, I.A., Buchmann, N., Longdoz, B., Epron, D., Dore, S. (2003). Measurement of Soil Respiration. In: Valentini, R. (eds) Fluxes of Carbon, Water and Energy of European Forests. Ecological Studies, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05171-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05171-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07848-4

  • Online ISBN: 978-3-662-05171-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics