Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 163))

Abstract

The computation of half-hourly fluxes is complex and requires the treatment of a large amount (on the order of 105) of instantaneous measurements. It requires several operations that may be performed in different ways, and experience has shown that the results were sensitive to the computation procedure. Before making any comparison between different sites, one must be assured that the fluxes are computed in the same way on each site. It is therefore necessary to define a methodology for measurement and flux computation to be used by all the network teams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001) Long term measurements of water vapour and carbon dioxide fluxes above a mixed forest in Ardenne’s region. Agric For Meteorol 108:293–315

    Article  Google Scholar 

  • Aubinet M, Heinesch B, Longdoz B, (2002) Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Global Change Biol 8:1053–1071

    Article  Google Scholar 

  • Baldocchi D, Hicks BB, Meyers TD (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–1340

    Article  Google Scholar 

  • Berbigier P, Bonnefond JM, Mellmann P (2001) C02 and water vapour fluxes for 2 years above Euroflux forest site. Agric For Meteorol 108:183–197

    Article  Google Scholar 

  • De Bruin H AR, Bink NJ, Kroon LJM (1991) Fluxes in the surface layer under advective conditions. In: Schmugge TJ, André JC (eds) Workshop on land surface evaporation measurement and parameterization. Springer, Berlin Heidelberg New York, pp 157–169

    Chapter  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Clement R, Granier A, Bernhofer C, Hollinger D, Lai CT, Kowalski A, Meyers T, Moors EJ, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Verma S, Law B, Moncrieff J, Grünwald T, Katul G, Wofsy S, Jensen NO, Vesala T, Tenhunen J, Suyker A, Wilson K (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

    Article  Google Scholar 

  • Finnigan J (1999) A comment on the paper by Lee (1998): “On micrometeorological observations of surface-air exchange over tall vegetation.” Agric For Meteorol 97:55–64

    Article  Google Scholar 

  • Flesch TK (1996) The footprint for flux measurements, from backward lagrangian stochastic models. Boundary Layer Meteorol 78:399–404

    Article  Google Scholar 

  • Foken T (2000) The turbulence experiment FINTUREX at the Neumayer-Station/ Antarctica. Bericht des Deutschen Wetterdienstes (in press)

    Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Article  Google Scholar 

  • Foken T, Jegede OO, Weisensee U, Richter SH, Handorf D, Görsdorf U, Vogel G, Schubert U, Kirzel H-J, Thiermann V (1997) Results of the LINEX-96/2 experiment. Deutscher Wetterdienst, Geschäftsbereich Forschung und Entwicklung, Arbeitsergebnisse 48, 75 pp

    Google Scholar 

  • Gash JHC, Culf AD (1996) Applying linear detrend to eddy correlation data in real time. Boundary Layer Meteorol 79:301–306

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Measurements of carbon Sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biol 2:159–168

    Article  Google Scholar 

  • Grace J, Malhi Y, Lloyd J, Mclntyre J, Miranda AC, Meir P, Miranda HS (1996) The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biol 2:209–217

    Article  Google Scholar 

  • Grelle A (1997) Long-term water and carbon dioxide fluxes from a boreal forest: methods and applications. Doctoral Thesis. Silvestria 28, Acta Universitatis Agriculturae Sueciae, 80 pp

    Google Scholar 

  • Grelle A (2001) Flux experiments in a Boreal Forest Stand within the Framework of EUROFLUX. In: Shimizu H (ed) Carbon dioxide and vegetation: advanced approaches for absorption of C02 and responses to C02. National Institute for Environmental Studies, Tsukuba, Japan, pp 17–27

    Google Scholar 

  • Grelle A, Lindroth A (1996) Eddy-correlation system for long term monitoring of fluxes of heat, water vapour, and C02. Global Change Biol 2:297–307

    Article  Google Scholar 

  • Gurjanov AA, Zubkovskii SL, Fedorov MM (1984) MnogoknaPnaja avtomatizirovannaja sistema obrabotki signalov no baze EVM. Geod Geophys Veröff R 11(26): 17–20

    Google Scholar 

  • Haenel HD, Grunhage L (1999) A closed analytical solution based on height-dependent profiles of wind speed and eddy viscosity. Boundary Layer Meteorol 93: 395–409

    Article  Google Scholar 

  • Hojstrup J (1993) A statistical data screening procedure. Meas Sci Technol 48:472–492

    Google Scholar 

  • Horst TW (1997) A simple formula for attenuation of eddy fluxes measured with first order response scalar sensors. Boundary Layer Meteorol 82:219–233

    Article  Google Scholar 

  • Horst TW, Weil JC (1992): Footprint estimation for scalar flux measurements in the atmospheric surface layer. Boundary Layer Meteorol 59:279–296

    Article  Google Scholar 

  • Horst TW, Weil JC (1994) How far is far enough? The fetch requirements for micromete-orological measurement of surface fluxes. J Atmos Oceanic Technol 11:1018–1025

    Article  Google Scholar 

  • Kaimal JC, Finnigan J J (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford Univ Press, Oxford, 289 pp

    Google Scholar 

  • Kaimal JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary Layer Meteorol 56:401–410

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Cote OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589

    Article  Google Scholar 

  • Kristensen L (1998) Time series analysis. Dealing with imperfect data. Riso National Laboratory, Riso-I-1228(EN), 31 pp

    Google Scholar 

  • Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Boundary Layer Meteorol 52:247–258

    Article  Google Scholar 

  • Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agric For Meteorol 91:39–49

    Article  Google Scholar 

  • Leuning R, Judd MJ (1996) The relative merits of open- and closed-path analysers for measurements of eddy fluxes. Global Change Biol 2:241–254

    Article  Google Scholar 

  • Leuning R, King KM (1992) Comparison of eddy-covariance measurements of C02 fluxes by open-and-closed-path C02 analysers. Boundary Layer Meteorol 59:297–311

    Article  Google Scholar 

  • Leuning R, Moncrieff J (1990) Eddy-covariance C02 measurements using open- and closed-path C02 analysers: corrections for analyser water vapor sensitivity and damping of fluctuations in air sampling tubes. Boundary Layer Meteorol 53:63–76

    Article  Google Scholar 

  • LI-COR (1991) LI-6262 C02/H20 analyser instruction manual. LI-COR, Lincoln, NE., 91 pp

    Google Scholar 

  • Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary Layer Meteorol 100(3):459–468

    Article  Google Scholar 

  • Mahrt L (1991) Eddy asymmetry in the sheared heated boundary layer. J Atmos Sci 4:153–157

    Google Scholar 

  • Massman WJ (2001) Reply to comment by Rannik on A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 107:247–251

    Article  Google Scholar 

  • McMillen RT (1986) A BASIC program for eddy correlation in non simple terrain. NOAA Technical Memorandum, ERL ART-147, NOAA, Silver Spring, MD

    Google Scholar 

  • McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary Layer Meteorol 43:231–245

    Article  Google Scholar 

  • Moncrieff JB, Mahli Y, Leuning R (1996) The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biol 2:231–240

    Article  Google Scholar 

  • Moncrieff JB, Massheder JM, de Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188/189:589–611

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary Layer Meteorol 37:17–35

    Article  Google Scholar 

  • Obukhov AM (1960) O strukture temperaturnogo polja i polja skorostej v uslovijach konvekcii. Izv AN SSSR Ser Geofiz: 1392–1396

    Google Scholar 

  • Paw UKT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Boundary Layer Meteorol 97:487–511

    Article  Google Scholar 

  • Rannik Ü (2001) A comment on the paper by W-J. Massman, A simple method for esti-mating frequency response corrections for eddy covariance systems. Agric For Meteorol 107:241–245

    Article  Google Scholar 

  • Rannik Ü, Vesala T (1999) Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Boundary Layer Meteorol 91:259–280

    Article  Google Scholar 

  • Rannik Ü, Vesala T, Keskinen R (1997) On the damping of temperature fluctuations in a circular tube relevant to the eddy covariance measurement technique. J Geophys Res 102:12789–12794

    Article  Google Scholar 

  • Rannik Ü, Aubinet M, Kurbanmuradov O, Sabelfeld T, Markkanen T, Vesala T (2000) Footprint analysis for measurements over a heterogeneous forest. Boundary Layer Meteorol 97:137–166

    Article  Google Scholar 

  • Schmid HP (1994) Source areas for scalars and scalar fluxes. Boundary Layer Meteorol 67:293–318

    Article  Google Scholar 

  • Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric For Meteorol 87:179–200

    Article  Google Scholar 

  • Schmid HP, Oke TR (1990) A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q J R Meteorol Soc 116:965–988

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, de Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture flux. Boundary Layer Meteorol 26:81–93

    Article  Google Scholar 

  • Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary Layer Meteorol 50:355–373

    Article  Google Scholar 

  • Shuttleworth WJ (1988) Corrections for the effect of background concentration change and sensor drift in real-time eddy correlation systems. Boundary Layer Meteorol 42:167–180

    Article  Google Scholar 

  • Smith EA, Hodges GB, Bacrania M, Cooper HJ, Owens MA, Chappell R, Kincannon W(1997) BOREAS net radiometer engineering study, final report. NASA, Grant NAG5–2447

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorol. Kluwer, Dordrecht, 666 pp

    Book  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol 14:512–526

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100

    Article  Google Scholar 

  • Wichura B, Foken T (1995) Anwendung integraler Turbulenzcharakteristiken zur Bestimmung von Beimengungen in der Bodenschicht der Atmosphäre. DWD, Abteilung Forschung, Arbeitsergebnisse no 29,52 pp

    Google Scholar 

  • Wilson KB, Goldstein A, Falge E, Aubinet M, Baldocchi DD, Bernhofer C, Ceulemans R, Dolman DH, Field C, Grelle A, Law B, Loustau D, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S. Energy balance closure at FLUXNET sites (submitted) Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity and the budgets of shear stress and heat flux. J Atmos Sci 28:1171 -1182

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aubinet, M. et al. (2003). Methodology for Data Acquisition, Storage, and Treatment. In: Valentini, R. (eds) Fluxes of Carbon, Water and Energy of European Forests. Ecological Studies, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05171-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05171-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07848-4

  • Online ISBN: 978-3-662-05171-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics