Skip to main content

Abstract

Extracorporeal shock waves are microsecond acoustic pulses with peak pressures of 30–120 MPa. The pressure pulse is generally followed by a tensile wave with a lower maximum yet longer duration. A typical example of a pressure registration is depicted in Fig. 9.1. The major medical application of extracorporeal shock waves is the fragmentation of stones in the body. The method was first applied in 1980.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coleman A. J., Saunders J. E. A review of the physical properties and biological effects of the high-amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 31, 75–89 (1993)

    Article  Google Scholar 

  2. Delius M.: “Medical applications and bioeffects of extracorporeal shock waves”, Shock Waves 4, 55–72 (1994)

    Article  ADS  Google Scholar 

  3. Mulvaney W. P.: “Attempted disentegration of calculi by ultrasonic vibrations”, J. Urol. 70, 704–707 (1953)

    Google Scholar 

  4. Coats E. C.: “The application of ultrasonic energy to urinary and biliary calculi”, J. Urol. 75, 864–874 (1956)

    Google Scholar 

  5. Lamport H., Newman H. F.: “Ultrasonic lithotresis in the ureter”, J. Urol. 76, 520–529 (1956)

    Google Scholar 

  6. Terhorst B., and Cichos M.: “Ultraschall zur Harnsteinzertrümmerung”, Biomed. Technik 18, 13–17 (1973)

    Article  Google Scholar 

  7. Huttmann A.: “Von der transurethralen elektrohydraulischen Lithotripsie zur extrakorporalen Stoßwellenzertrümmerung von Harnsteinen”, Urologe B 28, 220–225 (1988)

    Google Scholar 

  8. Goldberg V.: “Eine neue Methode der Harnsteinzertrümmerung — elektrohydraulische Lithotripsie”, Urologe B 19, 23–27 (1979)

    Google Scholar 

  9. M. Delius

    Google Scholar 

  10. Reuter H. J.: “Electronic lithotripsy: transurethral treatment of of bladder stones in 50 cases”, J. Urol. 104, 834–838 (1970)

    Google Scholar 

  11. Burhenne H. J.: “Electrohydrolytic fragmentation of retained common duct stones”, Radiology 117, 721–722 (1975)

    Google Scholar 

  12. Häusler E., Kiefer W.: “Anregung von Stoßwellen in Flüssigkeiten durch Hochgeschwindigkeitswassertropfen”, Verhandlungen Dtsch. Physikal. Gesellsch. (VI) 6, 786 (1971)

    Google Scholar 

  13. Konrad G., Ziegler M., Häusler E. et al.: “Fokussierte Stoßwellen zur berührungsfreien Nierensteinzertrümmerung an der freigelegten Niere”, Urologe A 18, 289–293 (1979)

    Google Scholar 

  14. Forssmann B., Hepp W., Chaussy C. et al.: “Eine Methode zur beruehrungsfreien Zertruemmerung von Nierensteinen durch Stosswellen”, Biomed. Technik 22, 164–168 (1977)

    Google Scholar 

  15. Chaussy C., Brendel W., Schmiedt E.: “Extracorporeally induced destruction of kidney stones by shock waves”, Lancet II, 1265–1268 (1980)

    Google Scholar 

  16. Wickham J. E.: “A Brief History of Renal Stone Surgery”, In: Wickham J. E., Buck A. C. (eds.), Renal Tract Stone, Churchill Livingstone. ( Edinburgh 1990 ), p. 453

    Google Scholar 

  17. Sauerbruch T., Delius M., Paumgartner G., Holl J., Wess O., Weber W., Hepp W., Brendel W.: “Fragmentation of gallstones by extracorporeal shock waves”, New Engl. J. Med. 314, 818–822 (1986)

    Google Scholar 

  18. Sauerbruch T., Stern, M.: “Fragmentation of bile duct stones by extracorporeal shock waves”, Gastroenterology 96, 146–52 (1989)

    Google Scholar 

  19. Sauerbruch T., Holl J., Sackmann M., Werner R., Wotzka R., Paumgartner G.: “Disintegration of a pancreatic duct stone with extracorporeal shock waves in a patient with chronic pancreatitis”, Endoscopy 19, 207–208 (1987)

    Article  Google Scholar 

  20. Iro H., Nitsche N., Schneider H., Ell C.: “Extracorporeal shock wave lithotripsy of salivary gland stones”, Lancet II, 115 (1989)

    Google Scholar 

  21. Valchanou V. D., Michailov P.: “High-energy shock waves in the treatment of delayed and nonunion of fractures”, Int. Orthopaedics (SICOT) 15, 181–184 (1991)

    Google Scholar 

  22. Schleberger R., Senge T.: “Non-invasive treatment of long-bone pseudarthrosis by shock waves (ESWL)”, Arch. Orthop. Trauma Surg. 111, 224–227 (1992)

    Article  Google Scholar 

  23. Clemedson C. J.: “Blast injury”, Physiol. Rev. (Wash) 36, 336–354 (1956)

    Google Scholar 

  24. Chaussy C.: Extracorporeal shock-wave lithotripsy ( Karger, Basel 1982 ) pp. 62

    Google Scholar 

  25. Hartman C., Child S. Z., Mayer R., Schenk E., Carstensen E. L.: “Lung damage from exposure to the fields of an electrohydraulic lithotripter”, Ultrasound Med. Biol. 16, 675–79 (1990)

    Article  Google Scholar 

  26. Delius M., Enders G., Heine G., Stark J., Remberger K., Brendel W.: ‘Biological effects of shock waves: lung hemorrhage by shock waves in dogs–pressure dependence“, Ultrasound Med. Biol. 13, 61–67 (1987)

    Article  Google Scholar 

  27. Karlsen J. S., Smevik B., Hovig T.: “Acute morphological changes in canine kidneys following exposure to extracorporeal shock waves”, Urol. Res. 19, 105115 (1991)

    Google Scholar 

  28. Weber C., Moran M. E., Braun E. D., Drach G. W.: “Injury of rat renal vessels following extracorporeal shock wave treatment”, J. Urol. 147, 476–81 (1992)

    Google Scholar 

  29. Delius M., Draenert K., Al Diek Y., Draenert Y.: “Biological effect of shock waves: in vivo effect of high-energy pulses on rabbit bone”, Ultrasound Med. Biol. 21, 1219–1225 (1995)

    Article  Google Scholar 

  30. Kuwahara M., Kambe K., Kurosu S., Orikasa S., Takayama K.: “Extracorporeal stone disintegration using chemical explosive pellets as an energy source of underwater shock waves”, J. Urol. 135, 814–817 (1986)

    Google Scholar 

  31. Delius M., Denk R., Berding C., Liebich H., Jordan M., Brendel W.: “Biological effects of shock waves: cavitation by shock waves in piglet liver”, Ultrasound Med. Biol. 16, 467–472 (1990)

    Article  Google Scholar 

  32. Delius M., Jordan M., Eizenhoefer H., Marlinghaus E., Heine G., Liebich H., Brendel W.: “Biological effects of shock waves: kidney haemorrhage by shock waves in dogs — administration rate dependence”, Ultrasound Med. Biol. 14, 689–694 (1988)

    Google Scholar 

  33. Delius M., Mueller W., Goetz A., Liebich H. G., Brendel W.: “Biological effects of shock waves: kidney hemorrhage in dogs at a fast shock-wave administration rate of 15 Hz” J. Lithotripsy Stone. Dis. 2, 103–110 (1990)

    Google Scholar 

  34. Delius M., Brendel W.: A model of extracorporeal shock-wave action: tandem action of shock waves (Letter to the editor), Ultrasound Med. Biol. 14, 515–518 (1988)

    Google Scholar 

  35. Tomita Y., Shima A.: “Mechanisms of impulsive pressure generation and damage pit formation by bubble collpase”, J. Fluid Mech. 169, 535–64 (1986)

    Article  ADS  Google Scholar 

  36. Dear J. P., Field J. E.: A study of the collapse of arrays of cavities. J. Fluid Mech. 190, 409–425 (1988)

    Article  ADS  Google Scholar 

  37. Philipp A., Delius M., Scheffcyk C., Vogel A., Lauterborn W.: “Interaction of lithotripter-generated shock waves with air bubbles”, J. Acoust. Soc. Am. 93, 2496–2509 (1993)

    Article  ADS  Google Scholar 

  38. Delius M., Ueberle F., Gambihler S.: “Acoustic energy determines haemoglobin release from erythrocytes by extracorporeal shock waves in vitro, Ultrasound Med. Biol. 21, 707–710 (1995)

    Article  Google Scholar 

  39. Delius M.: “Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones”, Ultrasound Med. Biol. 23, 611–617 (1997)

    Article  Google Scholar 

  40. Delius M., Ueberle F., Eisenmenger W.: “Extracorporeal shock waves act by shock wave—gas bubble interaction”, Ultrasound Med. Biol. 1998 24, 1055–1059 (1998)

    Google Scholar 

  41. Delius M., Heine G., Brendel W.: “A mechanism of gallstone destruction by extracorporeal shock waves”, Naturwissenschaften 75, 200–201 (1988)

    Article  ADS  Google Scholar 

  42. Zeman R. K., Davros W. J., Garra B. S., Horri S. C.: “Cavitation effects during lithotripsy. Part I: Results of in vitro experiments”, Radiology 177, 157–161 (1990)

    Google Scholar 

  43. Delius M., Gambihler S.: “Effect of Shock Waves on Gallstones and Materials”, In: Paumgartner G., Sauerbruch T., Sackmann M., Burhenne H. J. (eds.), Lithotripsy and Related Techniques for gallstone treatment ( Mosby Year Book, St. Louis, 1991 ) pp. 27–33

    Google Scholar 

  44. Zhong P., Chuong C. J., Preminger G. M.: “Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock-wave lithotripsy”, J. Acoust. Soc. Am. 94, 29–36 (1993)

    Article  ADS  Google Scholar 

  45. Sass W., Bräunlich M., Dreyer H. P., Matura E., Folberth W., Priesmeyer H. G., Seifert J.: “The mechanisms of stone disintegration by shock waves”, Ultrasound Med. Biol. 17, 239–243 (1991)

    Article  Google Scholar 

  46. Holtum, D.: Eigenschaften and Desintegration von menschlichen Gallensteinen unter Stoßwellenwirkung. PhD thesis, Fakultät Verfahrenstechnik, University of Stuttgart, 1993, pp. 1–131

    Google Scholar 

  47. Gambihler S., Delius M., Brendel W.: “Biological effects of shock waves: cell disruption, viability, and proliferation of 11210 cells exposed to shock waves in vitro, Ultrasound Med. Biol. 16, 587–594 (1990)

    Article  Google Scholar 

  48. Bruemmer F., Suhr D., Häusler D.: “Sensitivity of normal and malignant cells to shock waves”, J. Stone. Dis. 4, 243–248 (1992)

    Google Scholar 

  49. Gambihler S., Delius M.: In vitro interaction of lithotripter shock waves and cytotoxic drugs“, Br. J. Cancer 66, 69–73 (1992)

    Article  Google Scholar 

  50. Gambihler S., Delius M., Ellwart J. W.: “Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves”, J. Membr. Biol. 141, 267–275 (1994)

    Google Scholar 

  51. Lauer U., Bürgelt E., Squire Z., Messmer K., Hofschneider P. H., Gregor M., Delius M.: “Shock-wave permeabilization as new gene transfer method”, Gene. Ther. 4, 710–715 (1997)

    Article  Google Scholar 

  52. Delius M., Adams G.: “Shock wave permeabilization with ribosome inactivating proteins: a new approach to tumor therapy”, Cancer Res. 59, 5227–5232 (1999)

    Google Scholar 

  53. Staudenraus J., Eisenmenger, W.: “Fiber-optic probe hydrophone for ultrasonic and shock wave measurements in water”, Ultrasonic 31, 267–273 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delius, M. (2003). Extracorporeal Shock Waves: Bioeffects and Mechanisms of Action. In: Srivastava, R.C., Leutloff, D., Takayama, K., Grönig, H. (eds) Shock Focussing Effect in Medical Science and Sonoluminescence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05161-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05161-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07636-7

  • Online ISBN: 978-3-662-05161-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics