Advertisement

Pressure Pulses in Extracorporeal Shock Wave Lithotripsy and Extracorporeal Shock Wave Pain Therapy

  • Friedrich Ueberle
Chapter

Summary

The medical use of pressure pulses has various aspects. New developments in the pressure-pulse measuring technique as well as international standardization pave the way to better understanding of stone disintegration and biological effects. A comparison of the widely used measuring techniques is given. In recent years research has brought new insights to identify the importance of various pressure pulse parameters. The negative portions of the pressure pulses can be measured with higher reliability using fiberoptic hydrophones. Peak pressure and rise time are of minor importance, whereas the pulse energy has a good correlation with the disintegrated stone volume. In particular, the calculation of effective energy parameters is discussed. The total energy in the focal plane and the energy impinging on the stone surface have the highest correlation with the disintegrated stone volume. The development of new treatment modalities like pain therapy pose new questions like the importance of threshold values. A literature review shows the presently known pressure limits for tissue damage and the pulse intensity thresholds for effects on cells.

Keywords

Shock Wave Pressure Pulse Kidney Stone Stone Disease Extracorporeal Shock Wave Lithotripsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hepp, Grünewald, Brendel: “Die extrakorporale Stoßwellen-Lithotripsie”, Spektrum der Wissenschaften 44, 53 (1991)Google Scholar
  2. 2.
    Schmiedt: “25 Jahre neue Steinzeit”, Interview in Uro-News 2, Heft 5, 34–36 (1998)Google Scholar
  3. 3.
    Sauerbruch, Delius, Paumgartner, Holl, Wess, Weber, Hepp, Brendel: “Fragmentation of gallstones by extracorporeal shockwaves”, New England J. Med. 314, 818–822 (1986)Google Scholar
  4. 4.
    Sauerbruch, Stern: “Fragmentation of bile duct stones by extracorporeal shock waves”, Gastroenterology 96, 146–152 (1989)Google Scholar
  5. 5.
    Delhaye, Vandermeeren, Baize, Cremer: “Extracorporeal shock wave lithotripsy of pancratic calculi”, Gastroenterology 102, 610–620 (1992)Google Scholar
  6. 6.
    Sauerbruch, Holl, Sackmann, Werner, Wotzka, Paumgartner: “Disintegration of a pancreatic duct stone with extracorporeal shock waves in a patient with cronic pancreatitis”, Endoscopy 19, 207–208 (1987)CrossRefGoogle Scholar
  7. 7.
    Iro, Nitsche, Schneider, Ell: “Extracorporeal shock wave lithotripsy of salivary gland stones”, Lancet 11, 115 (1989)CrossRefGoogle Scholar
  8. 8.
    Valchanou, Michailow: “High energy shockwaves in the treatment of delayed and nonunion fractures”, Int. Orthopedics (SICOT) 15, 181–184 (1991)Google Scholar
  9. 9.
    Loew: “Die Wirkung extrakorporal erzeugter hochenergetischerr Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter — eine prospektive Studie”, In Chaussy et al.: Die Stoßwelle, Forschung und Klinik ( Attempto, Tübingen, 1993 ) pp. 153–156Google Scholar
  10. 10.
    Dahmen, Meiss, Nam Skruodies: “Extrakorporale Stoßwellentherapie (ESWT) im knochennahen Weichteilbereich der Schulter”, Extr. Orthop. 11, 25 (1992)Google Scholar
  11. 11.
    Rompe, Hopf, Küllmer, Heine, Bürger: “Analgesic effect of extracorporeal shock wave therapy on chronic tennis elbow”, J. Bone Joint Surgery (Br) 78-B, 233237 (1996)Google Scholar
  12. 12.
    Lohse-Busch, Kraemer, Reime: In Extracorporeal Shock Waves in Orthopedics (Springer, Berlin, Heidelberg, New York, 1997) Chap. 14Google Scholar
  13. 13.
    Baumann: “Gute Alternative zur Operation”, Urologische Nachrichten 02, 21 (2000)Google Scholar
  14. 14.
    Eisenmenger: “Elektromagnetische Erzeugung von ebenen Druckstössen in Flüssigkeiten”, Akustische Beihefte, Acustica Heft 1, 185–202 (1962)Google Scholar
  15. 15.
    Riedlinger, Ueberle, Wurster, Krauß, Vallon, Konrad, Kopper, Stoll, Goebbels, Gebhardt, Ziegler: “Die Zertrümmerung von Nierensteinen durch piezoelektrisch erzeugte Hochenergie-Schallpulse”, Urologie A 25, 188–192 (1986)Google Scholar
  16. 16.
    Ueberle: “Piezoelektrisch erzeugte Hochenergiepulse und ihre Eignung zur Eignung zur Lithotripsie”, In Ziegler (ed.), Die extracorporale und laserinduzierte Stosswellenlithotripsie bei Harn-und Gallensteinen ( Springer, Berlin, Heidelberg, New York 1987 )Google Scholar
  17. 17.
    Riedlinger, Weiß, Ueberle: “Nichtlinearitäten des transienten Schallfeldes eines piezoelektrischen Hochenergie-Pulssenders”, Fortschritte der Akustik DAGA, 489–493 (1987)Google Scholar
  18. 18.
    Cathignol, Chapelon, Mestas, Birer, Lewin: “Minimization of the Negative Pressure in Piezoelectric Shock Waves”, In Proc. Ultrasonics Int. Conf., Madrid, July 1989 (Guildford: Butterworths, 1989 ) pp. 1142Google Scholar
  19. 19.
    Cathignol, Tavakkoli, Arefiev: “Influence of the Pressure Time Waveform on the Transient Cavitation Effect”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., Seattle, Washington, USA, June 20–26, 1998, pp. 2799Google Scholar
  20. 20.
    Evan, Willis, Connors, McAteer, Lingeman, Cleveland, Bailey, Crum: “Separation of Cavitation and Renal Injury Induced by Shock Wave Lithotripsy (SWL) from SWL-Induced Impairment of Renal Hemodynamics”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., Seattle, Washington, USA, June 20–26, 1998, pp. 2487Google Scholar
  21. 21.
    Jordan, Cleveland, Bailey, Crum: “Detection of Lithotripsy-Induced Cavitation in Blood”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., Seattle, Washington, USA, June 20–26, 1998, pp. 2809Google Scholar
  22. 22.
    Crum, Bailey, Kaczkowski, Makin, Mourad, Beach, Carter, Schmiedl, Chandler, Martin, Vaezy, Keilman, Cleveland, Roy: “Therapeutic Ultrasound: A Promising Future in Clinical Medicine”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., Seattle, Washington, USA, June 20–26, 1998, pp. 719Google Scholar
  23. 24.
    “Shock-wave Measuring Technique in Liquids”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf.Seattle, Washington, USA, June 20–26, 1998, pp. 2793 Google Scholar
  24. 24.
    Schneider, Feigl, Löhr, Riedlinger, Hahn, Ell: “In vitro effects of high energy pulsed ultrasound on human tumor cells”, Eur. J. Gastroenterol. Hepatol. 6, 257–262 (1994)CrossRefGoogle Scholar
  25. 25.
    Joechle: “Kavitationsdosimetrie in hochenergetischen Ultraschallfeldern”, PhD thesis, University of Heidelberg (1996)Google Scholar
  26. 26.
    Lewin, Shafer: “Shock wave sensors: I. Requirements and Design”, J. Lithotripsy and Stone Disease 3, 17 (1991)Google Scholar
  27. 27.
    Harris: “Lithotripsy pulse measurement errors due to non-ideal hydrophone and amplifier frequency response”, Food and Drug Administration, Rockville, USA (1989)Google Scholar
  28. 28.
    Müller, Platte: “Einsatz einer breitbandigen Piezodrucksonde auf PVDF-Basis zur Untersuchung konvergierender Stoßwellen in Wasser”, Acustica 58, 215–222 (1985)Google Scholar
  29. 29.
    Müller: “Dornier-Lithotripter im Vergleich: Vermessung der Stoßwellenfelder und Fragmentationswirkungen”, Biomed. Technik 35, 250–262 (1990)CrossRefGoogle Scholar
  30. 30.
    Granz, Köhler “What makes a shock wave efficient in lithotripsy?”, J. Stone Dis. 4, 123–125 (1992)Google Scholar
  31. 31.
    Coleman, Saunders: “A Comparison of PVDF Hydrophone Measurements in the Acoustic Field of a Shock-Wave Source”, In Extra-und Intrakorporale Lithotripsie bei Harn-, Gallen-, Pankreas-und Speichelsteinen (Thieme, Stuttgart, New York 1990 ), pp. 15–22Google Scholar
  32. 32.
    Schafer: “Cost-effective shock wave hydrophones”, J. Stone Disease 5, 73–76 (1993)Google Scholar
  33. 33.
    Draft of suggested information for reporting extracorporeal shock wave lithotripsy device shock wave measurements, Food and Drugs Administration, Rockville, USA (1991) http://www.fda.gov/cdrh/ode/lithosw.pdf Google Scholar
  34. 34.
    Schätzle: “Spezielle Fokusdruck-Sensoren für die Lithotripsie und deren Kalibration”, Fortschritte der Akustik DAGA ( DPG-Verlag Berlin, Bad Honneff 1992 )Google Scholar
  35. 35.
    Koch, Molkenstruck, Reibold: “Shock-Wave Measurement using a Calibrated Interferometric Fiber-tip Sensor”, Ultrasound Med. Biol. 23, 1259–1266 (1997)Google Scholar
  36. 36.
    Coleman, Draguioti, Tiptaf, Shotri, Saunders: “Acoustic performance and clinical use of a fiberoptic hydrophone”, Ultrasound Med. Biol. 24, 143–151 (1998)Google Scholar
  37. 37.
    Pye, Parr, Munro, Anderson, McDicken: “Robust electromagnetic probe for the monitoring of lithotripter output”, Ultrasound Med. Biol. 17, 931–939 (1991)Google Scholar
  38. 38.
    Staudenraus: “Erzeugung und Ausbreitung freifeldfokussierter Hochenergiedruckimpulse in Wasser”, Fortschr. Ber., VDI Reihe 21 Nr. 89 ( VDI-Verlag, Düsseldorf 1992 )Google Scholar
  39. 39.
    Wess, Ueberle, Dührßen, Hilcken, Reuner, Schultheiß, Staudenraus, Rattner, Haaks, Granz: “Working Group Technical Developments — Consensus Report”, In Chaussy, Eisenberger, Jocham, Wilbert (eds.), High-Energy Shock Waves in Medicine ( Thieme, Stuttgart, New York, 1997 ), pp. 59–71Google Scholar
  40. 40.
    IEC 61846: Ultrasonics — Pressure pulse lithotripters — Characteristics of fields (IEC, 1998)Google Scholar
  41. 41.
    Ueberle: “Acoustic Parameters of Pressure Pulse Sources Used in Lithotripsy and Pain Therapy”, In Chaussy, Eisenberger, Jocham, Wilbert (eds.): High-Energy Shock Waves in Medicine ( Thieme, Stuttgart, New York, 1997 ), pp. 76–85Google Scholar
  42. 42.
    Dreyer, Riedlinger, Steiger: “Experiments on the Relation of Shock-Wave Parameters to Stone Disintegration”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., Seattle, Washington, USA, June 20–26, 1998, pp. 2811–2812Google Scholar
  43. 43.
    Seidl, Steinbach, Wöhrle, Hofstädter: “Induction of stress fibres and intercellular gaps in human vascular endothelium by shock-waves”, Ultrasonics 32, 397 (1994)CrossRefGoogle Scholar
  44. 44.
    Mishriki, Cohen, Baker, Wills, Whitfield, Feneley: “Choosing a powerful lithotripter”, Brit. J. Urol. 71, 653–660 (1993)CrossRefGoogle Scholar
  45. 45.
    Granz, Köhler: “What makes a shock wave efficient in lithotripsy?”, J. Stone Disease 4, 123–128 (1992)Google Scholar
  46. 46.
    Dreyer, Riedlinger, Steiger: “Experiments on the Relation of Shock-Wave Parameters to Stone Disintegration”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., June 20–26, 1998, pp. 2811–2812Google Scholar
  47. 47.
    Koch, Grünewald: “Disintegration Mechanisms of Weak Acoustic Shock Waves”, In Proc. Int. Conf. Ultrasonics, Madrid, July 1989 (Guildford: Butterworths, 1989 ) pp. 1136–1141Google Scholar
  48. 48.
    Rassweiler, Köhrmann, Heine, Potempa, Wess, Alken: “Modulith SL 10/20 — First clinical experience with a new interdisciplinary lithotripter”, Z. Urologie Poster 2, 75–77 (1990)Google Scholar
  49. 49.
    Koch, Grünewald: “Disintegration mechanisms of weak acoustic shock waves”, In Proc. Internat. Conf. Ultrasonics, Madrid, July 1989 (Guildford: Butter-worths, 1989 ) pp. 1136–1141Google Scholar
  50. 50.
    Lobentanzer: “The concept of acoustic energy in lithotripsy”, Dornier User Letter 7, 22–26 (1991)Google Scholar
  51. 51.
    Ueberle: “Shock Wave Technology”, In Siebert, Buch (eds.), Extracorporeal Shock Waves in Orthopedics ( Springer, Berlin, Heidelberg, New York, 1997 ) pp. 59–87Google Scholar
  52. 52.
    Meier, Ueberle, Rupprecht: “Physikalische Parameter extrakorporaler Stoßwellen”, Biomed. Tech. 43, 269–274 (1998)Google Scholar
  53. 53.
    Köhrmann, Kahmann, Weber, Rassweiler, Alken: “Vergleich verschiedener Lithotripter anhand der Desintegrativen Effektivität (DE) and Desintegrativen Bandbreite (DB) am In-vitro-Steinmodell”, Akt. Urol. 24, 320–325 (1993)Google Scholar
  54. 54.
    Vergunst, Onno, Terpestra, Schröder, Matura: “In vivo assessment of shock-wave pressures”, Gastroenterology 99, 1467–1474 (1990)Google Scholar
  55. 55.
    Vergunst, Onno, Terpestra, Schröder, Matura: “Assessment of shock-wave pressure profiles in vitro: clinical implications”, J. Lithotripsy and Stone Disease 1, 289–298 (1989)Google Scholar
  56. 56.
    Cleveland, Bailey, Crum, Stonehill, Williams, McAteer: “Effect of Overpressure on Dissolution and Cavitation of Bubbles Stabilized on a Metal Surface”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., Seattle, Washington, USA, June 20–26, 1998, pp. 2499–2500Google Scholar
  57. 57.
    Coleman, Codama, Choi, Alanis, Saunders: “The cavitation threshold of human tissue exposed to 0.2 MHz pulsed ultrasound: Preliminary measurements based on a study of clinical lithotripsy”, Ultrasound Med. Biol. 21, 405–417 (1995)Google Scholar
  58. 58.
    Delius, Enders, Heine, Stark, Remberger, Brendel: “Biological effects of shock waves: lung hemorrhage by shock waves in dogs — pressure dependence”, Ultrasound Med. Biol. 13, 61–67 (1987)Google Scholar
  59. 59.
    Zhong, Cioanta, Cocks, Preminger: “Effects of Tissue Constraint on Shock Wave-Induced Bubble Oscillation in vivo”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., Seattle, Washington, USA, June 20–26, 1998, pp. 2495Google Scholar
  60. 60.
    Delius, Brendel: “Mechanisms of Action in Extracorporeal Shock Wave Lithotripsy: Experimental Studies”. In: Ferruci, Burhenne, Delius (eds.) Biliary Lithotripsy ( Yearbook, Chicago 1989 ) pp. 31–42Google Scholar
  61. 61.
    Philipp, Delius, Scheffcyk, Vogel, Lauterborn: “Interaction of Lithotriptergenerated shock waves with air bubbles”, JASA 93, 2496–2504 (1993)CrossRefGoogle Scholar
  62. 62.
    Delius: “Minimal static excess pressure minimizes the effect of extracorporeal shock waves on cells and reduces it on gallstones”, Ultrasound Med. Biol. 23, 611–617 (1997)Google Scholar
  63. 63.
    Delius, Ueberle “The destruction of gall stones and model plaster stones by extracorporeal shock waves”, Ultrasound Med. Biol. 20, 251–258 (1995)CrossRefGoogle Scholar
  64. 64.
    O. Wess, E.H. Marlinghaus, J. Katona: “Lars, eine großaperturige leistungsschallquelle für medizinische Anwendungen”, Fortschritte der Akustik DAGA, (DPG Verlag, Bad Honnef 1989) pp. 295ffGoogle Scholar
  65. 65.
    Carlson, Boysen, Banner, Gravenstein: “Stone Movement During ESWL”, In Gravenstein, Peter (ed.), Extracorporeal Shock-Wave Lithotripsy for Renal Stone Disease ( Butterworths, Boston, 1986 ), pp. 77–85Google Scholar
  66. 66.
    Parr, Pye, Ritchie, Tolley: “Mechanisms responsible for diminished fragmentation of uretreal calculi”, J. Urol. 148, 1079–1083 (1992)Google Scholar
  67. 67.
    Nitsche, Amelsberg, Berg, Fölsch: “Extracorporeal shock wave lithotripsy of gallstones in different biles and water in vitro”, Digestion 55, 175–178 (1994)CrossRefGoogle Scholar
  68. 68.
    Loew: Die Wirkung extrakorporal erzeugter hochenergetischer Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter, ( Habilitation thesis, University of Heidelberg, 1994 )Google Scholar
  69. 69.
    Vakil, Gracewski, Everbach: “Relationship of Model Stone Properties to Fragmentation Mechanisms during Lithotripsy”, J. Lithotripsy and Stone Disease 3, 304–310 (1991)Google Scholar
  70. 70.
    Koch, Grünewald: “Disintegration Mechanisms of Weak Acoustic Shock Waves”, In Proc. Int. Conf. Ultrasonics, Madrid, July 1989 (Guildford: Butterworths, 1989 ) pp. 1136–1141Google Scholar
  71. 71.
    Kedrinskii: “On a Mechanism of Target Disintegration in Shock-Wave Focusing in ESWL”, In Proc. 135th Meeting 16th International Congress on Acoustics ICA/ASA 98 Conf., Seattle (WA), USA, June 20–26, 1998, pp. 2803–2804Google Scholar
  72. 72.
    Holtum: “Eigenschaften und Desintegration von menschlichen Gallensteinen unter Stoßwelleneinwirkung”, PhD thesis, University of Stuttgart (1993)Google Scholar
  73. 73.
    Work bond index values communicated by Hepp, personal communication (1989)Google Scholar
  74. 74.
    Chaussy: Berührungsfreie Nierensteinzertrümmerung durch extrakorporal erzeugte, fokussierte Stoßwellen (S. Karger Verlag, Basel 1980 )Google Scholar
  75. 75.
    Singh, Agarwal: “Mechanical and Ultrasonic Parameters of Kidney Stones”, J. Lithotripsy and Stone Disease 2, 117–123 (1990)Google Scholar
  76. 76.
    Chuong, Zhong, Preminger: “A comparison of stone damage caused by different modes of shock wave delivery”, J. Urol. 148, 200 (1992)Google Scholar
  77. 77.
    Sass, Steffen, Matura, Folberth, Dreyer, Seifert: “Experiences with lithotripters: measurement of standardized fragmentation”, J. Stone Disease 4, 129–140 (1992)Google Scholar
  78. 78.
    Jocham: Report at the Meeting of the German Society for Shock-Wave Lithotripsy (1998), to be publishedGoogle Scholar
  79. 79.
    Drach, Dretler, Fair, Finlayson, Gillenwater, Griffith, Lingeman, Newman: “Report of the United States cooperative study of extracorporeal shock wave lithotripsy”, J. Urol. 135, 1127–1133 (1986)Google Scholar
  80. 80.
    Delius, Ueberle, Eisenmenger: “Extracorporeal shock waves act by shock wave — gas bubble interaction”, Ultrasound Med. Biol. 24, 1055–1059 (1998)CrossRefGoogle Scholar
  81. 81.
    Miller, Thomas: “Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves”, Ultrasound Med. Biol. 21, 249–257 (1995)CrossRefGoogle Scholar
  82. 82.
    Steinbach, Hofstaedter, Roessler, Wieland: “Determination of energy-dependent extent of vascular damage caused by high-energy shock waves in an umbilical cord model”, Urological Research 21, 279–282 (1993)CrossRefGoogle Scholar
  83. 83.
    Roessler, Steinbach, Nicolai, Hofstaedter, Wieland: “Effects of high-energy shock waves on the viable human kidney”, Urological Research 21, 273–277 (1993)CrossRefGoogle Scholar
  84. 84.
    Heimbach, Munver, Zhong, Jacobs, Hesse, Müller, Preminger: “Acoustic and mechanical properties of artificial stones in comparison to natural stones”, J. Urol. 164, 537–544 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Friedrich Ueberle
    • 1
  1. 1.Hamburg University of Applied SciencesFB Naturwissenschaftliche TechnikHamburgGermany

Personalised recommendations