Skip to main content

Mechanics of Stone Fragmentation in Extracorporeal Shock-Wave Lithotripsy

  • Chapter
Shock Focussing Effect in Medical Science and Sonoluminescence
  • 171 Accesses

Abstract

To study the interaction between a stone and a cavitation jet during extracorporeal shock-wave lithotripsy (ESWL), we developed a model based on geometrical acoustics describing the impingement of a cavitation microjet on an elastic solid boundary and the subsequent propagation of the resultant shock waves in the solid. The model incorporated the acoustic and mechanical properties of different stone types to calculate the jet impact pressure at the stone surface and the stress and strain at the propagating shock fronts. This model was validated using stone phantoms in slab configuration fabricated to have comparable acoustic and mechanical properties to renal calculi. This chapter summarizes our efforts, both analytical and experimental, towards the understanding of stone fragmentation in extracorporeal shock wave lithotripsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaussy C., Brendel W., Schmiedt W.: “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 13, 1265 (1980)

    Article  Google Scholar 

  2. Chaussy C.: “First clinical experience with extracorporeally induced destruction of kidney stones by shock waves,” J. Urol. 249, 417 (1982)

    Google Scholar 

  3. Crum L.A.: “Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL,” J. Urol. 140, 1587–1590 (1988)

    Google Scholar 

  4. Delius M., Brendel W., Heine G.: “A mechanism of gallstone destruction by extracorporeal shock waves,” Naturwissenschaften 75, 200–201 (1988)

    Article  ADS  Google Scholar 

  5. Coleman A.J., Sanders J.E., Preston R.C., Bacon D.R.: “Pressure waveforms generated by a Dornier extracorporeal shock wave lithotripter,” Ultrasound Med. Biol. 13, 651 (1987)

    Article  Google Scholar 

  6. Dear J.P., Field J.E.: “A study of collapse of arrays of cavities,” J. Fluid Mech. 190, 409–425 (1988)

    Article  ADS  Google Scholar 

  7. Vogel A., Lauterborn W., Timm R “Optical investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 1206, 299–338 (1989)

    Article  ADS  Google Scholar 

  8. Tomita Y., Shima A.: “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse,” J. Fluid Mech. 169, 535–564 (1986)

    Article  ADS  Google Scholar 

  9. Chuong C.J., Zhong P., Preminger G.M.: “Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy.” J. Endourol. 7, 437–444 (1993)

    Article  Google Scholar 

  10. Khan S.R., Hackett R.L., Finlayson B.: “Morphology of urinary stone particles resulting from ESWL treatment,” J. Urol. 136, 1367–1372 (1986)

    Google Scholar 

  11. Zhong P., Chuong C.J.: “Propagation of shock waves in elastic solids caused by cavitation microjet impact, Part 1: Theoretical formulation,” J. Acoust. Soc. Am. 94, 19–28 (1993)

    Article  ADS  Google Scholar 

  12. Zhong P., Chuong C.J., Preminger G.M.: “Propagation of shock waves in elastic solids caused by cavitation microjet impact, Part 2: application in extracorporeal shock wave lithotripsy,” J. Acoust. Soc. Am. 94, 29–36 (1993)

    Article  ADS  Google Scholar 

  13. Lesser M.B., Field J.E.: “The impact of compressible liquids,” Ann. Rev. Fluid Mech. 15, 97–122 (1983)

    Article  ADS  Google Scholar 

  14. Lesser M.B.: “Analytical solutions of liquid-drop impact problem,” Proc. Roy. Soc. London 377, 289–308 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  15. Struik D.J., Lectures on Classical Differential Geometry ( Dover, New York 1961 )

    MATH  Google Scholar 

  16. Ridah S.: “Shock waves in water,” J. Appl. Phys. 64, 152–158 (1988)

    Article  ADS  Google Scholar 

  17. Fung Y.C.: Foundations of Solid Mechanics ( Prentice-Hall, New Jersey 1965 )

    Google Scholar 

  18. Grant M.McD., Lush P.A.: “Liquid impact on a bilinear elastic-plastic solid and its role in cavitation erosion,” J. Fluid Mech. 176, 237–252 (1987)

    Article  ADS  Google Scholar 

  19. Keller H.B.: “Propagation of stress discontinuities in inhomogeneous elastic media,” SIAM Rev. 6, 356–382 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Cerveny V., Ravindra R.: Theory of Seismic Head Waves (University of Toronto Press, Toronto 1971 )

    Google Scholar 

  21. Heymann F.J.: “High speed impact between a liquid drop and a solid surface,” J. Appl. Phys. 40, 5113–5122 (1969)

    Article  ADS  Google Scholar 

  22. Field J.E., Lesser M.B., Davies P.N.H.: “Theoretical and Experimental Studies of Two-Dimensional Impact,” In Proc. 5th Int. Conf. on Rain Erosion by Liquid and Solid Impact, ed. by Field J.E. (Cavendish Lab, Cambridge, U.K. 1979) Paper 2

    Google Scholar 

  23. Lush P.A.: “Impact of a liquid mass on a perfectly plastic solid,” J. Fluid Mech. 135, 373–387 (1983)

    Article  ADS  MATH  Google Scholar 

  24. Blowers R.M.: “On the response of an elastic solid to droplet impact,” J. Inst. Math. Appl. 5, 167–193 (1969)

    Article  MATH  Google Scholar 

  25. Tomita Y., Shima A.: “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse,” J. Fluid Mech. 169, 535–564 (1986)

    Article  ADS  Google Scholar 

  26. Dear J.P., Field J.E.: “A study of the collapse of an array of cavities,” J. Fluid Mech. 190, 409–425 (1988)

    Article  ADS  Google Scholar 

  27. Vogel A., Lauterborn W., Timm R: “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles,” J. Fluid Mech. 206, 299–338 (1989)

    Article  ADS  Google Scholar 

  28. Murata S., Watanabe H., Takahashi T., Watanabe K., Furue H., Oinuma S.: “Studies on the application of microexplosions to medicine and biology,” Jpn. J. Urol. 68, 249–257 (1977)

    Google Scholar 

  29. Ebrahimi F., Wang F.: “Fracture behavior of urinary stones under compression,” J. Biomed. Mater. Res. 23, 507–521 (1989)

    Article  Google Scholar 

  30. Zhong P., Chuong C.J., Goolsby R.D., Preminger G.M.: “Microhardness measurement of renal calculi,” J. Biomed. Mater. Res. 26, 1117 (1992)

    Article  Google Scholar 

  31. Achenbach J.D.: Wave Propagation in Elastic Solids ( North-Holland, Amsterdam 1973 )

    MATH  Google Scholar 

  32. Whitham G.B.: Linear and Nonlinear Waves ( John Wiley, New York 1974 )

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chuong, C.J. (2003). Mechanics of Stone Fragmentation in Extracorporeal Shock-Wave Lithotripsy. In: Srivastava, R.C., Leutloff, D., Takayama, K., Grönig, H. (eds) Shock Focussing Effect in Medical Science and Sonoluminescence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05161-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05161-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07636-7

  • Online ISBN: 978-3-662-05161-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics