Skip to main content

Abstract

In the few years after the discovery of stable single-bubble sonoluminescence (SBSL), experiments and theoretical calculations have only explored a small fraction of the high-dimensional space of experimental parameters that governs the occurrence of this phenomenon. We investigate the possibility and practicality of extending the range of parameters which allow for stable SBSL, especially asking for the feasibility of upscaling sonoluminescence, i.e. obtaining higher light emission intensities from larger bubbles undergoing more violent collapses. This can be achieved in several ways, e.g. by lowering the liquid temperature, changing liquid viscosity or surface tension, or, most efficiently, by decreasing the acoustic driving frequency. The application of lower frequencies has to be assisted by a simultaneous reduction of the partial inert gas pressure of the dissolved gas (e.g. stronger degassing) to maintain the diffusive stability of the bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.F. Gaitan: Ph.D. thesis, University of Mississippi (1990); D.F. Gaitan, L.A. Crum, R.A. Roy, C.C. Church: J. Acoust. Soc. Am. 91, 3166 (1992)

    Google Scholar 

  2. B.P. Barber, R.A. Hiller, R. Löfstedt, S.J. Putterman: Phys. Rep. 281, 65 (1997)

    Article  ADS  Google Scholar 

  3. V. Bjerknes: Die Kraftfelder ( Friedrich Vieweg, Braunschweig, 1909 )

    MATH  Google Scholar 

  4. B. Gompf, R. Günther, G. Nick, R. Pecha, W. Eisenmenger: Phys. Rev. Lett. 79, 1405 (1997); R. Pecha, B. Gompf, G. Nick, W. Eisenmenger: Phys. Rev. Lett. 81, 717 (1998)

    Article  ADS  Google Scholar 

  5. R.A. Hiller, S.J. Putterman, K.R. Weninger: Phys. Rev. Lett. 80, 1090 (1998)

    Article  ADS  Google Scholar 

  6. M.J. Moran, D. Sweider: Phys. Rev. Lett. 80, 4987 (1998)

    Article  ADS  Google Scholar 

  7. T.J. Matula, R.A. Roy, P.D. Mourad, W.B. McNamara III, K.S. Suslick: Phys. Rev. Lett. 75, 2602 (1995)

    Article  ADS  Google Scholar 

  8. L. Bernstein, M. Zakin, E. Flint, K. Suslick: J. Phys. Chem. 100, 6612 (1996)

    Article  Google Scholar 

  9. C.C. Wu, P.H. Roberts: Phys. Rev. Lett. 70, 3424 (1993); L. Frommhold, A.A. Atchley: Phys. Rev. Lett. 74, 2883 (1994); L. Kondic, J.I. Gersten, C. Yuan: Phys. Rev. E 52, 4976 (1995)

    Google Scholar 

  10. W. Moss, D. Clarke, J. White, D. Young: Phys. Lett. A 211, 69 (1995); W. Moss, D. Clarke, D. Young: Science 276, 1398 (1997)

    Google Scholar 

  11. S. Hilgenfeldt, D. Lohse, W. Moss: Phys. Rev. Lett. 80, 1332 (1998)

    Article  ADS  Google Scholar 

  12. S. Hilgenfeldt, M.P. Brenner, S. Grossmann, D. Lohse: J. Fluid Mech. 365, 171 (1998)

    Article  ADS  MATH  Google Scholar 

  13. J. Holzfuss, M. Rueggeberg, R. Mettin: Phys. Rev. Lett. 81, 1961 (1998); K. Hargreaves, T.J. Matula, L.A. Crum, W.C. Moss: J. Acoust. Soc. Am. 103, 3048 (1998)

    ADS  Google Scholar 

  14. M.P. Brenner, D. Lohse, T.F. Dupont: Phys. Rev. Lett. 75, 954 (1995)

    Article  ADS  Google Scholar 

  15. S. Hilgenfeldt, D. Lohse, M.P. Brenner: Phys. Fluids 8, 2808 (1996)

    Article  ADS  MATH  Google Scholar 

  16. D. Lohse, M.P. Brenner, T.F. Dupont, S. Hilgenfeldt, B. Johnston: Phys. Rev. Lett. 78, 1359 (1997); D. Lohse, S. Hilgenfeldt: J. Chem. Phys. 107, 6986 (1997)

    ADS  Google Scholar 

  17. M.M. Fyrillas, V.Q. Vuong, A.J. Szeri: J. Acoust. Soc. Am. 104, 2073 (1998)

    Article  ADS  Google Scholar 

  18. R.E. Apfel: private communication (1997)

    Google Scholar 

  19. B.P. Barber, S.J. Putterman: Nature (London) 352, 318 (1991)

    Article  ADS  Google Scholar 

  20. S. Cordry: Ph.D. thesis, University of Mississippi (1995)

    Google Scholar 

  21. M. Plesset: J. Appl. Mech. 16, 277 (1949); M. Plesset, A. Prosperetti: Ann. Rev. Fluid Mech. 9, 145 (1977)

    Article  Google Scholar 

  22. C.E. Brennen: Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995 )

    Google Scholar 

  23. R. Löfstedt, B.P. Barber, S.J. Putterman: Phys. Fluids A 5, 2911 (1993)

    Article  ADS  MATH  Google Scholar 

  24. A. Prosperetti, J. Fluid Mech. 222, 587 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. In other work [15, 16] we set G = 0 and therefore slightly underestimated the total damping. The present form of the damping results in smaller afterbounces in R(t) and consequently in slightly more shape stable bubbles. For f = 20 kHz the theoretical values for the onset of shape instabilities in the large Pa regime are Rp ax = 4 µm for G = 0 and Rp ax = 6 µm for the G presented here; the experimental value [32] is 71.1m. Note, however, that even for G = 0 the overall agreement with the experimental results is satisfactory; see Figs. 1 and 7 of [33]. The effect of thermal damping was analyzed in detail by Prosperetti and Hao [35].

    Google Scholar 

  26. S. Hilgenfeldt, S. Grossmann, D. Lohse: Nature (London) 398, 402 (1999)

    Article  ADS  Google Scholar 

  27. A. Prosperetti: Quart. Appl. Math. 34, 339 (1977)

    MATH  Google Scholar 

  28. A. Prosperetti: Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 62, 196 (1977)

    MathSciNet  MATH  Google Scholar 

  29. This is not in general the case for the parametric instability where the bubble can break during the afterbounces [12, 15], as confirmed in recent experiments by Gaitan and Holt (private communication)

    Google Scholar 

  30. F. Gaitan, G. Holt: J. Acoust. Soc. Am. 103, 3046 (1998)

    Article  ADS  Google Scholar 

  31. A. Eller, H.G. Flynn: J. Acoust. Soc. Am. 37, 493 (1964); A. Eller, L.A. Crum: J. Acoust. Soc. Am. Suppl. 47, 762 (1970); M.M. Fyrillas, A.J. Szeri: J. Fluid Mech. 277, 381 (1994)

    Google Scholar 

  32. G. Holt, F. Gaitan: Phys. Rev. Lett. 77, 3791 (1996)

    Article  ADS  Google Scholar 

  33. M.P. Brenner, S. Hilgenfeldt, D. Lohse: In NATO-ASI on Sonoluminescence and Sonnochemistry, ed. by L. Crum ( Kluwer Academic Publishers, Dordrecht, 1997 )

    Google Scholar 

  34. S. Hilgenfeldt, D. Lohse: “Predictions for upscaling sonoluminescence”, Phys. Rev. Lett. 82, 1036 (1999)

    Article  ADS  Google Scholar 

  35. A. Prosperetti, Y. Hao: Phil. Trans. Roy. Soc. A 357, 203 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. B.D. Storey, A.J. Szeri: Proc. Roy. Soc. London A 456, 1685 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  37. R. Toegel, B. Gompf, R. Pecha, D. Lohse: Phys. Rev. Lett. 85, 3165 (2000)

    Article  ADS  Google Scholar 

  38. Yu.T. Didenko, W.B. McNamara, K.S. Suslick: Nature 407, 877 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hilgenfeldt, S., Lohse, D. (2003). Upscaling Single-Bubble Sonoluminescence. In: Srivastava, R.C., Leutloff, D., Takayama, K., Grönig, H. (eds) Shock Focussing Effect in Medical Science and Sonoluminescence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05161-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05161-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07636-7

  • Online ISBN: 978-3-662-05161-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics