Advertisement

The Shock-Wave Theory of Sonoluminescence

  • P. H. Roberts
  • C. C. Wu
Chapter

Abstract

When driven into violent pulsation by a sufficiently strong source of sound, a bubble of air in water emits light, a phenomenon known as ‘sonoluminescence’. The reasons for this are not yet fully understood. The most popular explanation at this time is the shock-wave theory of sonoluminescence. This supposes that, because the bubble surface moves inwards supersonically with respect to the air in the bubble during the compressive parts of the acoustic cycle, it launches an imploding spherical shock wave that becomes so strong, as it focuses at the center of the bubble, that it ionizes the air, the observed light being emitted from the resulting plasma ball. We discuss here the structure and stability of spherical shocks in ideal and van der Waals gases, paying particular attention to similarity shocks of the Guderley type and their relevance to sonoluminescence. We discuss the status of the shock-wave theory of sonoluminescence and alternative explanations. We pose a number of theoretical challenges.

Keywords

Shock Front Similarity Solution Bubble Surface Linear Stability Theory Bubble Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frenzel, H., Schultes, H.: Z. Phys. Chem. B 27, 421–424 (1934)Google Scholar
  2. 2.
    Barber, B.P., Hiller, R.A., Löfstedt, R., Putterman, S.J., Weninger, K.R.: Phy. Rep. 281, 66–143 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Hilgenfeldt, S., Brenner, M.P., Grossman, S., Lohse, D.: J. Fluid Mech. 365, 171–204 (1998)ADSMATHCrossRefGoogle Scholar
  4. 4.
    Cheeke, J.D.N.: Canad. J. Phys. 75, 77–96 (1997)ADSGoogle Scholar
  5. 5.
    Löfstedt, R., Putterman, S.: J. Acoust. Soc. Am. 90, 2027–2033 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    Roberts P.H., Wu, C.C.: Theoret. Comput. Fluid Dynam. 10, 357–372 (1998)ADSMATHCrossRefGoogle Scholar
  7. 7.
    Weninger, K.R., Barber, B.P., Putterman, S.J.: Phys. Rev. Lett. 78, 1799–1802 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Trilling, L.: J. Appl. Phys. 23, 14–17 (1952)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Jarman, P.: J. Acoust. Soc. Am. 32, 1459–1462 (1960)ADSCrossRefGoogle Scholar
  10. 10.
    Wu, C.C., Roberts, P.H.: Phys. Rev. Lett. 70, 3424–3427 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Wu, C.C., Roberts, P.H.: Proc. R. Soc. Lond. A 445, 323–349 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Patel, N.H., Ranga Rao, M.P.: J. Eng. Math. 30, 683–692 (1996)MATHCrossRefGoogle Scholar
  13. 13.
    Barber, B.P., Weninger, K., Löfstedt, R., Putterman, S.: Phys. Rev. Lett. 74, 5276–5279 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Prosperetti, A.: J. Acoust. Soc. Am. 100, 2677–2678 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Roberts, P.H., Wu, C.C.: Phys. Lett. A 213, 59–64 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    Wu, C.C., Roberts, P.H.: Quart. J. Mech. Appl. Math. 49, 501–543 (1996)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Higgins, M.S.L.: J. Acoust. Soc. Am. 100, 2678 (1996)CrossRefGoogle Scholar
  18. 18.
    Putterman, S.: Phys. World 38–42 (May 1998)Google Scholar
  19. 19.
    Moss, W.C., Clarke, D.B., White, J.W., Young, D.A.: Phys. Fluids 6, 2979–2985 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Moss, W.C., Clarke, D.B., White, J.W., Young, D.A.: Phys. Lett. A 211, 69–74 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Moss, W.C., Clarke, D.B., Young, D.A.: Science 276, 1398–1401 (1997)CrossRefGoogle Scholar
  22. 22.
    Kondie, L., Gersten, J.I., Yuan, C.: Phys. Rev. E 52, 4976–4990 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Kondié, L., Yuan, C., Chan, C.K.: Phys. Rev. E 57, R32 — R35 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Weninger, K., Hiller, R., Barber, B.P., Lacoste, D., Putterman, S.J.: J. Phys. Chem. 99, 14195–14197 (1995)CrossRefGoogle Scholar
  25. 25.
    Guderley, G.: Luftfahrtforsch. 19, 302–312 (1942)MathSciNetGoogle Scholar
  26. 26.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. ( Pergamon, Oxford, 1987 )MATHGoogle Scholar
  27. 27.
    Chester, W.C.: Phil. Mag. 45, 1293–1301 (1954)MathSciNetMATHGoogle Scholar
  28. 28.
    Chisnell, R.F.: J. Fluid Mech. 2, 286–298 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Whitham G.B.: J. Fluid Mech. 2, 145–171 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Yousaf, M.: J. Fluid Mech. 66, 577–591 (1974)ADSMATHCrossRefGoogle Scholar
  31. 31.
    Gardner, J.H., Book, D.L., Bernstein, I.B.: J. Fluid Mech. 114, 41–58 (1982)ADSMATHCrossRefGoogle Scholar
  32. 32.
    US patent No. 5659173: Converting acoustic energy into other useful energy forms (1997)Google Scholar
  33. 33.
    Greenspan, H.P., Nadim, A.: Phys. Fluids A 5, 1065–1067 (1993)ADSMATHCrossRefGoogle Scholar
  34. 34.
    Barber, B.P., Wu, C.C., Löfstedt, R., Roberts, P.H., Putterman, S.J.: Phys. Rev. Lett. 72, 1380–1383 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    Frommhold, L., Meyer, W.: Collision-induced emission and sonoluminescence. (13th Int. Conf. on Spectral Line Shapes, Firenze, Italy, 16–21 June 1996). AIP Conf. Proc. (no. 386 ): 471–484 (1997)Google Scholar
  36. 36.
    Wu, C.C., Roberts, P.H.: Phys. Lett. A 250 131–136 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Richtmyer, R.D.: Comm. Pure Appl. Math. 13, 297–319 (1960)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Andronov, V., Bakhrakh, S.M., Meshkov, E.E., Mokhov, V.N., Nikiforov, V.V., Pevnitskii, A.V., Tolshmyakov, A.I.: Soviet Phys. JETP 44, 424–427 (1976)ADSGoogle Scholar
  39. 39.
    Zhang, Q., Graham, M.J.: Phys. Rev. Lett. 79, 2674–2677 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    Mikaelian, K.O.: Phys. Rev. Lett. 80, 508–511 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    Young, D.L.: Physica 12D, 32–44 (1984)Google Scholar
  42. 42.
    Whitham, G.B.: Linear and Nonlinear Waves ( Wiley, New York, 1974 )MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. H. Roberts
    • 1
  • C. C. Wu
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations