Skip to main content

Nonlinear Spectroscopy

  • Chapter
Laser Spectroscopy

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

One of the essential advantages that single-mode lasers can offer for high-resolution spectroscopy is the possibility of overcoming the limitation set by Doppler broadening. Several techniques have been developed that are based on selective saturation of atomic or molecular transitions by sufficiently intense lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.R. Bennet, Jr.: Hole-burning effects in a He-Ne-optical maser. Phys. Rev. 126, 580 (1962)

    Article  ADS  Google Scholar 

  2. V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977)

    Book  Google Scholar 

  3. S. Mukamel: Principles of nonlinear optical spectroscopy (Oxford Univ. Press, Oxford 1999)

    Google Scholar 

  4. M.D. Levenson: Introduction to Nonlinear Spectroscopy (Academic, New York 1982)

    Google Scholar 

  5. W.E. Lamb: Theory of an optical maser. Phys. Rev. A 134, 1429 (1964)

    ADS  Google Scholar 

  6. H. Gerhardt, E. Matthias, F. Schneider, A. Timmermann: Isotope shifts and hy-perfine structure of the 6s – 7p-transitions in the cesium isotopes 133, 135 and 137. Z. Phys. A 288, 327 (1978)

    Article  ADS  Google Scholar 

  7. See, for instance: S.L. Chin: Fundamentals of Laser Optoelectronics (World Scientific, Singapore 1989) pp.281 ff.

    Google Scholar 

  8. M.S. Sorem, A.L. Schawlow: Saturation spectroscopy in molecular iodine by intermodulated fluorescence. Opt. Commun. 5, 148 (1972)

    Article  ADS  Google Scholar 

  9. M.D. Levenson, A.L. Shawlow: Hyperfine interactions in molecular iodine. Phys. Rev. A 6, 10 (1972)

    Article  ADS  Google Scholar 

  10. H.J. Foth: Sättigungsspektroskopie an Molekülen. Diplom thesis, University of Kaiserslautern, Germany (1976)

    Google Scholar 

  11. R.S. Lowe, H. Gerhardt, W. Dillenschneider, R.F. Curl Jr., F.K. Tittel: Intermod-ulated fluorescence spectroscopy of BO2 using a stabilized dye laser. J. Chem. Phys. 70, 42 (1979)

    Article  ADS  Google Scholar 

  12. A.S. Cheung, R.C. Hansen, A.J. Nerer: Laser spectroscopy of VO: analysis of the rotational and hyperfine structure. J. Mol. Spectrosc. 91, 165 (1982)

    Article  ADS  Google Scholar 

  13. L.A. Bloomfield, B. Couillard, Ph. Dabkiewicz, H. Gerhardt, T.W. Hänsch: Hyperfine structure of the 23S - 53P transition in 3He by high resolution UV laser spectroscopy. Opt. Commun. 42, 247 (1982)

    Article  ADS  Google Scholar 

  14. Ch. Hertzler, H.J. Foth: Sub-Doppler polarization spectra of He, N2 and Ar+ recorded in discharges. Chem. Phys. Lett. 166, 551 (1990)

    Article  ADS  Google Scholar 

  15. H.J. Foth, F. Spieweck. Hyperfine structure of the R(98), (58–1)-line of I2 at λ = 514.5nm. Chem. Phys. Lett. 65, 347 (1979)

    Article  ADS  Google Scholar 

  16. W.G. Schweitzer, E.G. Kessler, R.D. Deslattes, H.P. Layer, J.R. Whetstone: Description, performance and wavelength of iodine stabilised lasers. Appl. Opt. 12, 2927 (1973)

    Article  ADS  Google Scholar 

  17. R.L. Barger, J.B. West, T.C. English: Frequency stabilization of a CW dye laser. Appl. Phys. Lett. 27, 31 (1975)

    Article  ADS  Google Scholar 

  18. C. Salomon, D. Hills, J.L. Hall: Laser stabilization at the millihertz level. J. Opt. Soc. B 5, 1576 (1988)

    Article  ADS  Google Scholar 

  19. V. Bernard, et al.: CO2-Laser stabilization to 0.1 Hz using external electro-optic modulation. IEEE J. Quantum Electron. 33, 1288 (1997)

    Article  ADS  Google Scholar 

  20. J.C. Hall, J.A. Magyar: ‘High resolution saturation absorption studies of methane and some methyl-halides’. In: High-Resolution Laser Spectroscopy, ed. by K. Shimoda, Topics Appl. Phys., Vol. 13 (Springer, Berlin, Heidelberg 1976) p. 137

    Chapter  Google Scholar 

  21. J.L. Hall: ‘Sub-Doppler spectroscopy, methane hyperfine spectroscopy and the ultimate resolution limit’. In: Colloq. Int. due CNRS, No. 217 (Edit. due CNRS, 15 quai Anatole France, Paris 1974) p. 105

    Google Scholar 

  22. B. Bobin, C.J. Bordé, J. Bordé, C. Bréant: Vibration-rotation molecular constants for the ground and (v 3 = 1) states of SF6 from saturated absorption spectroscopy. J. Mol. Spectrosc. 121, 91 (1987)

    Article  ADS  Google Scholar 

  23. M. de Labachelerie, K. Nakagawa, M. Ohtsu: Ultranarrow 13C2H2 saturated absorption lines at 1.5 µm. Opt. Lett. 19, 840 (1994)

    Article  ADS  Google Scholar 

  24. C. Wieman, T.W. Hänsch: Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 36, 1170 (1976)

    Article  ADS  Google Scholar 

  25. R.E. Teets, F.V. Kowalski, W.T. Hill, N. Carlson, T.W. Hänsch: ‘Laser polarization spectroscopy’. In: Advances in Laser Spectroscopy, SPIE Proc. 113, 80 (1977)

    Google Scholar 

  26. M.E. Rose: Elementary Theory of Angular Momentum (Wiley, New York 1957)

    MATH  Google Scholar 

  27. R.N. Zare: Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York 1988)

    Google Scholar 

  28. V. Stert, R. Fischer: Doppler-free polarization spectroscopy using linear polarized light. Appl. Phys. 17, 151 (1978)

    Article  ADS  Google Scholar 

  29. H. Gerhardt, T. Huhle, J. Neukammer, P.J. West: High resolution polarization spectroscopy of the 557 nm transition of KrI. Opt. Commun. 26, 58 (1978)

    Article  ADS  Google Scholar 

  30. M. Raab, G. Höning, R. Castell, W. Demtröder: Doppler-free polarization spectroscopy of the Cs2 molecule at λ = 6270 Å. Chem. Phys. Lett. 66, 307 (1979)

    Article  ADS  Google Scholar 

  31. M. Raab, G. Höning, W. Demtröder, C.R. Vidal: High resolution laser spectroscopy of Cs2. J. Chem. Phys. 76, 4370 (1982)

    Article  ADS  Google Scholar 

  32. W. Ernst: Doppler-free polarization spectroscopy of diatomic molecules in flame reactions. Opt. Commun. 44, 159 (1983)

    Article  ADS  Google Scholar 

  33. M. Francesconi, L. Gianfrani, M. Inguscio, P. Minutolo, A. Sasso: A new approach to impedance atomic spectroscopy. Appl. Phys. B 51, 87 (1990)

    Article  ADS  Google Scholar 

  34. L. Gianfrani, A. Sasso, G.M. Tino, F. Marin: Polarization spectroscopy of atomic oxygen by dye and semiconductor diode lasers. Il Nuovo Cimento D10, 941 (1988)

    ADS  Google Scholar 

  35. M. Göppert-Mayer: Über Elementarakte mit zwei Quantensprüngen. Ann. Physik 9, 273 (1931)

    Article  Google Scholar 

  36. W. Kaiser, C.G. Garret: Two-photon excitation in LLCA F2: MATH. Phys. Rev. Lett. 7, 229 (1961)

    Article  ADS  Google Scholar 

  37. J.J. Hopfield, J.M. Worlock, K. Park: Two-quantum absorption spectrum of KI. Phys. Rev. Lett. 11, 414 (1963)

    Article  ADS  Google Scholar 

  38. P. Bräunlich: ‘Multiphoton spectroscopy’. In: Progress in Atomic Spectroscopy, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978)

    Google Scholar 

  39. J.M. Worlock: Two-photon spectroscopy’. In: Laser Handbook, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972)

    Google Scholar 

  40. B. Dick, G. Hohlneicher: Two-photon spectroscopy of dipole-forbidden transitions. Theor. Chim. Acta 53, 221 (1979);

    Article  Google Scholar 

  41. B. Dick, G. Hohlneicher: J. Chem. Phys. 70, 5427 (1979)

    Article  ADS  Google Scholar 

  42. J.B. Halpern, H. Zacharias, R. Wallenstein: Rotational line strengths in two- and three-photon transitions in diatomic molecules. J. Mol. Spectrosc. 79, 1 (1980)

    Article  ADS  Google Scholar 

  43. K.D. Bonin, T.J. McIlrath: Two-photon electric dipole selection rules. J. Opt. Soc. Am. B 1, 52 (1984)

    Article  ADS  Google Scholar 

  44. G. Grynberg, B. Cagnac: Doppler-free multiphoton spectroscopy. Rep. Progr. Phys. 40, 791 (1977)

    Article  ADS  Google Scholar 

  45. F. Biraben, B. Cagnac, G. Grynberg: Experimental evidence of two- photon transition without Doppler broadening. Phys. Rev. Lett. 32, 643 (1974)

    Article  ADS  Google Scholar 

  46. G. Grynberg, B. Cagnbac, F. Biraben: ‘Multiphoton resonant processes in atoms’. In: Coherent Nonlinear Optics, ed. by M.S. Feld, V.S. Letokhov, Topics Curr. Phys., Vol.21 (Springer, Berlin, Heidelberg 1980)

    Chapter  Google Scholar 

  47. T.W. Hänsch, K. Harvey, G. Meisel, A.L. Shawlow: Two-photon spectroscopy of Na 3s-4d without Doppler-broadening using CW dye laser. Opt. Commun. 11, 50 (1974)

    Article  ADS  Google Scholar 

  48. M.D. Levenson, N. Bloembergen: Observation of two-photon absorption without Doppler-broadening on the 3s – 5s transition in sodium vapor. Phys. Rev. Lett. 32, 645 (1974)

    Article  ADS  Google Scholar 

  49. A. Timmermann: High resolution two-photon spectroscopy of the 6p 23P0 - 7p 3P0 transition in stable lead isotopes. Z. Physik A 286, 93 (1980)

    Article  ADS  Google Scholar 

  50. S.A. Lee, J. Helmcke, J.L. Hall, P. Stoicheff: Doppler-free two-photon transitions to Rydberg levels. Opt. Lett. 3, 141 (1978)

    Article  ADS  Google Scholar 

  51. R. Beigang, K. Lücke, A. Timmermann: Singlet-Triplet mixing in 4s and Rydberg states of Ca. Phys. Rev. A 27, 587 (1983)

    Article  ADS  Google Scholar 

  52. S.V. Filseth, R. Wallenstein, H. Zacharias: Two-photon excitation of CO (A1∏) and N2 (a 1g). Opt. Commun. 23, 231 (1977)

    Article  ADS  Google Scholar 

  53. E. Riedle, H.J. Neusser, E.W. Schlag: Electronic spectra of polyatomic molecules with resolved individual rotational transitions: benzene. J. Chem. Phys. 75, 4231 (1981)

    Article  ADS  Google Scholar 

  54. H. Sieber, E. Riedle, J.H. Neusser: Intensity distribution in rotational line spectra I: Experimental results for Doppler-free S1 ← S0 transitions in benzene. J. Chem. Phys. 89, 4620 (1988);

    Article  ADS  Google Scholar 

  55. E. Riedle: Doppler-freie Zweiphotonen-Spektroskopie an Benzol. Habilitation thesis, Inst. Physikalische Chemie, TU München, Germany (1990)

    Google Scholar 

  56. E. Riedle, H.J. Neusser: Homogeneous linewidths of single rotational lines in the “channel three” region of C6H6. J. Chem. Phys. 80, 4686 (1984)

    Article  ADS  Google Scholar 

  57. U. Schubert, E. Riedle, J.H. Neusser: Time evolution of individual rotational states after pulsed Doppler-free two-photon excitation. J. Chem. Phys. 84, 5326 and 84, 6182 (1986)

    Article  ADS  Google Scholar 

  58. W. Bischel, P.J. Kelley, Ch.K. Rhodes: High-resolution Doppler-free two-photon spectroscopic studies of molecules. Phys. Rev. A 13, 1817 and 13, 1829 (1976)

    Article  ADS  Google Scholar 

  59. R. Guccione-Gush, H.P Gush, R. Schieder, K. Yamada, C. Winnewisser: Doppler-free two-photon absorption of NH3 using a CO2 and a diode laser. Phys. Rev. A 23, 2740 (1981)

    Article  ADS  Google Scholar 

  60. G.F. Bassani, M. Inguscio, T.W. Hänsch (Eds.): The Hydrogen Atom (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  61. M. Weitz, F. Schmidt-Kaler, T.W. Hänsch: Precise optical Lamb-shift measurements in atomic hydrogen. Phys. Rev. Lett. 68, 1120 (1992);

    Article  ADS  Google Scholar 

  62. S.A. Lee, R. Wallenstein, T.W. Hänsch: Hydrogen 1S-2S-isotope shift and 1S Lamb shift measured by laser spectroscopy. Phys. Rev. Lett. 35, 1262 (1975)

    Article  ADS  Google Scholar 

  63. J.R.M. Barr, J.M. Girkin, J.M. Tolchard, A.I. Ferguson: Interferometric measurement of the 1S1/2 – 2S1/2 transition frequency in atomic hydrogen. Phys. Rev. Lett. 56, 580 (1986)

    Article  ADS  Google Scholar 

  64. M. Niering, et al.: Measurement of the hydrogen 1S – 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett. 84, 5496 (2000)

    Article  ADS  Google Scholar 

  65. F. Biraben, J.C. Garreau, L. Julien: Determination of the Rydberg constant by Doppler-free two-photon spectroscopy of hydrogen Rydberg states. Europhys. Lett. 2, 925 (1986)

    Article  ADS  Google Scholar 

  66. F.H.M. Faisal, R. Wallenstein, H. Zacharias: Three-photon excitation of xenon and carbon monoxide. Phys. Rev. Lett. 39, 1138 (1977)

    Article  ADS  Google Scholar 

  67. B. Cagnac: ‘Multiphoton high resolution spectroscopy’. In: Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977) p. 147

    Google Scholar 

  68. V.I. Lengyel, M.I. Haylak: Role of autoionizing states in multiphoton ionization of complex atoms. Adv. At. Mol. Phys. 27, 245 (1990)

    Article  ADS  Google Scholar 

  69. E.M. Alonso, A.L. Peuriot, V.B. Slezak: CO2-laser-induced multiphoton absorption of CF2Cl2. Appl. Phys. B 40, 39 (1986)

    Article  ADS  Google Scholar 

  70. V.S. Lethokov: Multiphoton and multistep vibrational laser spectroscopy of molecules. Commen. At. Mol. Phys. 8, 39 (1978)

    Google Scholar 

  71. W. Fuss, J. Hartmann: IR absorption of SF6 excited up to the dissociation limit. J. Chem. Phys. 70, 5468 (1979)

    Article  ADS  Google Scholar 

  72. F.V. Kowalski, W.T. Hill, A.L. Schawlow: Saturated-interference spectroscopy. Opt. Lett. 2, 112 (1978)

    Article  ADS  Google Scholar 

  73. R. Schieder: Interferometric nonlinear spectroscopy. Opt. Commun. 26, 113 (1978)

    Article  ADS  Google Scholar 

  74. S. Tolanski: An Introduction to Interferometry (Longman, London 1973)

    Google Scholar 

  75. C. Delsart, J.C. Keller: ‘Doppler-free laser induced dichroism and birefringence’. In: Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol.2, (Springer, Berlin, Heidelberg 1976) p. 154

    Google Scholar 

  76. M.D. Levenson, G.L. Eesley: Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy. Appl. Phys. 19, 1 (1979)

    Article  ADS  Google Scholar 

  77. M. Raab, A. Weber: Amplitude-modulated heterodyne polarization spectroscopy. J. Opt. Soc. Am. B 2, 1476 (1985)

    Article  ADS  Google Scholar 

  78. K. Danzmann, K. Grützmacher, B. Wende: Doppler-free two-photon polarization spectroscopy measurement of the Stark-broadened profile of the hydrogen Hα line in a dense plasma. Phys. Rev. Lett. 57, 2151 (1986)

    Article  ADS  Google Scholar 

  79. T.W. Hänsch, A.L. Schawlow, C.W. Series: The spectrum of atomic hydrogen. Sci. Am. 240, 72 (1979)

    Article  ADS  Google Scholar 

  80. R.S. Berry: How good is Niels Bohrs atomic model? Contemp. Phys. 30, 1 (1989)

    Google Scholar 

  81. F. Schmidt-Kaien, D. Leibfried, M. Weitz, T.W. Hänsch: Precision measurement of the isotope shift of the 1S-2S transition of atomic hydrogen and deuterium. Phys. Rev. Lett. 70, 2261 (1993)

    Article  ADS  Google Scholar 

  82. V.S. Butylkin, A.E. Kaplan, Y.G. Khronopulo: Resonant Nonlinear Interaction of Light with Matter (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  83. J.J.H. Clark, R.E. Hester (Eds.): Advances in Nonlinear Spectroscopy (Wiley, New York 1988)

    Google Scholar 

  84. S.S. Kano: Introduction to Nonlinear Laser Spectroscopy (Academic, New York 1988)

    Google Scholar 

  85. T.W. Hänsch: ‘Nonlinear high-resolution spectroscopy of atoms and molecules’. In: Nonlinear Spectroscopy, Proc. Int. School of Physics “Enrico Fermi” Course LXIV (North-Holland, Amsterdam 1977) p. 17

    Google Scholar 

  86. D.C. Hanna, M.Y. Yunatich, D. Cotter: Nonlinear Optics of Free Atoms and Molecules, Springer Ser. Opt. Sci., Vol. 17 (Springer, Berlin, Heidelberg 1979)

    Book  Google Scholar 

  87. St. Stenholm: Foundations of Laser Spectroscopy (Wiley, New York 1984)

    Google Scholar 

  88. R. Altkorn, R.Z. Zare: Effects of saturation on laser-induced fluorescence measurements. Ann. Rev. Phys. Chem. 35, 265 (1984)

    Article  ADS  Google Scholar 

  89. B. Cagnac: ‘Laser Doppler-free techniques in spectroscopy’. In: Frontiers of Laser Spectroscopy of Gases, ed. by A.C.P. Alves, J.M. Brown, J.H. Hollas, Nato ASO Series C, Vol. 234, (Kluwer, Dondrost 1988)

    Google Scholar 

  90. S.H. Lin (Ed.): Advances in Multiphoton Processes and Spectroscopy (World Scientific, Singapore 1985–1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2003). Nonlinear Spectroscopy. In: Laser Spectroscopy. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05155-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05155-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05157-3

  • Online ISBN: 978-3-662-05155-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics