Skip to main content

Optical Pumping and Double-Resonance Techniques

  • Chapter
  • 1799 Accesses

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

Optical pumping means selective population or depletion of atomic or molecular levels by aborption of radiation, resulting in a population change ΔN in these levels, which causes a noticeable deviation from the thermal equilibrium population. With intense atomic resonance lines emitted from hollow-cathode lamps or from microwave discharge lamps, optical pumping had successfully been used for a long time in atomic spectroscopy, even before the invention of the laser [10.1, 10.2]. However, the introduction of lasers as very powerful pumping sources with narrow linewidths has substantially increased the application range of optical pumping. In particular, lasers have facilitated the transfer of this well-developed technique to molecular spectroscopy. While early experiments on optical pumping of molecules [10.3, 10.4] were restricted to accidental coincidences between molecular absorption lines and atomic resonance lines from incoherent sources, the possibility of tuning a laser to the desired molecular transition provides a much more selective and effective pumping process. It allows, because of the larger intensity, a much larger change ΔN i = N i0 - N i of the population density in the selected level |i〉 from its unsaturated value N i0 at thermal equilibrium to a nonequilibrium value N i .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Bernheim: Optical Pumping, an Introduction (Benjamin, New York 1965)

    Google Scholar 

  2. B. Budick: ‘Optical pumping methods in atomic spectroscopy’. In: Adv. At. Mol. Phys. 3, 73 (Academic, New York 1967)

    Google Scholar 

  3. R.N. Zare: ‘Optical pumping of molecules’. In: Int’l Colloquium on Doppler-Free Spectroscopic Methods for Simple Molecular Systems (CNRS, Paris 1974) p. 29

    Google Scholar 

  4. M. Broyer, G. Gouedard, J.C. Lehmann, J. Vigue: ‘Optical pumping of molecules’. In: Adv. At. Mol. Phys. 12, 164 (Academic, New York 1976).

    ADS  Google Scholar 

  5. G. zu Putlitz: ‘Determination of nuclear moments with optical double resonance’. Springer Tracts Mod. Phys. 37, 105 (Springer, Berlin, Heidelberg 1965).

    Article  ADS  Google Scholar 

  6. C. Cohen-Tannoudji: ‘Optical pumping with lasers.’ In: Atomic Physics IV, ed. by G. zu Putlitz, E.W. Weber, A. Winnacker (Plenum, New York 1975) p. 589.

    Chapter  Google Scholar 

  7. R.N. Zare: Angular Momentum (Wiley, New York 1988).

    Google Scholar 

  8. R.E. Drullinger, R.N. Zare: Optical pumping of molecules. J. Chem. Phys. 51, 5532 (1969).

    Article  ADS  Google Scholar 

  9. K. Bergmann: ‘State selection via optical methods’. In: Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, Oxford 1988) p. 293.

    Google Scholar 

  10. H.G. Weber, P. Brucat, W. Demtröder, R.N. Zare: Measurement of NO2 2B2 state g-values by optical radio frequency double-resonance. J. Mol. Spectrosc. 75, 58 (1979)

    Article  ADS  Google Scholar 

  11. W. Happer: Optical pumping. Rev. Mod. Phys. 44, 168 (1972)

    Article  ADS  Google Scholar 

  12. B. Decomps, M. Dumont, M. Ducloy: ‘Linear and nonlinear phenomena in laser optical pumping’. In: Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976) p.284

    Google Scholar 

  13. G.W. Series: Thirty years of optical pumping. Contemp. Phys. 22, 487 (1981)

    Article  ADS  Google Scholar 

  14. I.I. Rabi: Zur Methode der Ablenkung von Molekularstrahlen. Z. Physik 54, 190 (1929)

    Article  ADS  Google Scholar 

  15. H. Kopfermann: Kernmomente (Akad. Verlagsanstalt, Frankfurt 1956)

    MATH  Google Scholar 

  16. N.F. Ramsay: Molecular Beams, 2nd edn. (Clarendon, Oxford 1989)

    Google Scholar 

  17. J.C. Zorn, T.C. English: ‘Molecular beam electric resonance spectroscopy’. In: Adv. At. Mol. Phys. 9, 243 (Academic, New York 1973)

    Google Scholar 

  18. D.D. Nelson, G.T. Fraser, K.I. Peterson, K. Zhao, W. Klemperer: The microwave spectrum of K = O states of Ar-NH3. J. Chem. Phys. 85, 5512 (1986)

    Article  ADS  Google Scholar 

  19. A.E. DeMarchi (Ed.): Frequency Standards and Metrology (Springer, Berlin, Heidelberg 1989) pp.46 ff.

    Book  Google Scholar 

  20. W.J. Childs: Use of atomic beam laser RF double resonance for interpretation of complex spectra. J. Opt. Soc. Am. B 9, 191 (1992)

    Article  ADS  Google Scholar 

  21. S.D. Rosner, R.A. Holt, T.D. Gaily: Measurement of the zero-field hyperfine structure of a single vibration-rotation level of Na2 by a laser-fluorescence molecular-beam resonance. Phys. Rev. Lett. 35, 785 (1975)

    Article  ADS  Google Scholar 

  22. A.G. Adam: Laser-fluorescence molecular-beam-resonance studies of Na2 line-shape due to HFS. PhD. thesis, Univ. of Western Ontario, London, Ontario (1981);

    Google Scholar 

  23. A.G. Adam, S.D. Rosner, T.D. Gaily, R.A. Holt: Coherence effects in laser-fluorescence molecular beam magnetic resonance. Phys. Rev. A 26, 315 (1982)

    Article  ADS  Google Scholar 

  24. W. Ertmer, B. Hofer: Zerofield hyperfine structure measurements of the metastable states 3d 24s 4 F 3/29/2 of *SC using laser-fluorescence-atomic beam magnetic resonance technique. Z. Physik A 276, 9 (1976)

    Article  ADS  Google Scholar 

  25. J. Pembczynski, W. Ertmer, V. Johann, S. Penselin, P. Stinner: Measurement of the hyperfine structure of metastable atomic states of 55Mm, using the ABMR-LIRF-method. Z. Physik A 291, 207 (1979);

    Article  ADS  Google Scholar 

  26. J. Pembczynski, W. Ertmer, V. Johann, S. Penselin, P. Stinner: Z. Physik A 294, 313 (1980)

    Article  ADS  Google Scholar 

  27. N. Dimarca, V. Giordano, G. Theobald, P. Cérez: Comparison of pumping a cesium beam tube with D1 and D2 lines. J. Appl. Phys. 69, 1159 (1991)

    ADS  Google Scholar 

  28. G.W. Chantry (Ed.): Modern Aspects of Microwave Spectroscopy (Academic, London 1979)

    Google Scholar 

  29. K. Shimoda: ‘Double resonance spectroscopy by means of a laser’. In: Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol. 2 (Springer, Berlin, Heidelberg 1976) p. 197

    Chapter  Google Scholar 

  30. K. Shimoda: ‘Infrared-microwave double resonance’. In: Laser Spectroscopy III, ed. by J.L. Hall, H.L. Carlsten, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1975) p. 279

    Google Scholar 

  31. H. Jones: Laser microwave-double-resonance and two-photon spectroscopy. Commen. At. Mol. Phys. 8, 51 (1978)

    Google Scholar 

  32. F. Tang, A. Olafson, J.O. Henningsen: A study of the methanol laser with a 500 MHz tunable CO2 laser. Appl. Phys. B 47, 47 (1988)

    Article  ADS  Google Scholar 

  33. R. Neumann, F. Träger, G. zu Putlitz: ‘Laser microwave spectroscopy’. In: Progress in Atomic Spectroscopy, ed. by H.J. Byer, H. Kleinpoppen (Plenum, New York 1987)

    Google Scholar 

  34. J.C. Petersen, T. Amano, D.A. Ramsay: Microwave-optical double resonance of DND in the A 1A” (000) state. J. Chem. Phys. 81, 5449 (1984)

    Article  ADS  Google Scholar 

  35. R.W. Field, A.D. English, T. Tanaka, D.O. Harris, P.A. Jennings: Microwave-optical double resonance with a CW dye laser, BaO X 1 ∑ and A 1 ∑;. J. Chem. Phys. 59, 2191 (1973)

    Article  ADS  Google Scholar 

  36. R.A. Gottscho, J. Brooke-Koffend, R.W. Field, J.R. Lombardi: OODR spectroscopy of BaO. J. Chem. Phys. 68, 4110 (1978);

    Article  ADS  Google Scholar 

  37. R.A. Gottscho, J. Brooke-Koffend, R.W. Field, J.R. Lombardi: J. Mol. Spectrosc. 82, 283 (1980)

    Article  ADS  Google Scholar 

  38. J.M. Cook, G.W. Hills, R.F. Curl: Microwave-optical double resonance spectrum of NH2. J. Chem. Phys. 67, 1450 (1977)

    Article  ADS  Google Scholar 

  39. W.E. Ernst, S. Kindt: A molecular beam laser-microwave double resonance spectrometer for precise measurements of high temperature molecules. Appl. Phys. B 31, 79 (1983)

    Article  ADS  Google Scholar 

  40. W.J. Childs: The hyperfine structure of alkaline-earth monohalide radicals: New methods and new results 1980–82. Comments At. Mol. Phys. 13, 37 (1983)

    Google Scholar 

  41. W.E. Ernst, S. Kindt, T. Törring: Precise Stark-effect measurements in the Vground state of CaCl. Phys. Rev. Phys. Lett. 51, 979 (1983);

    Article  ADS  Google Scholar 

  42. W.E. Ernst, S. Kindt, T. Töning: Phys. Rev. A 29, 1158 (1984)

    Article  ADS  Google Scholar 

  43. W. Demtröder, D. Eisel, H.J. Foth, G. Höning, M. Raab, H.J. Vedder, D. Zev-golis: Sub-Doppler laser spectroscopy of small molecules. J. Mol. Structure 59, 291 (1980)

    Article  ADS  Google Scholar 

  44. F. Bylicki, G. Persch, E. Mehdizadeh, W. Demtröder: Saturation spectroscopy and OODR of NO2 in a collimated molecular beam. Chem. Phys. 135, 255 (1989)

    Article  Google Scholar 

  45. M.A. Johnson, C.R. Webster, R.N. Zare: Rotational analysis of congested spectra: Application of population labelling to the BaI C-X system. J. Chem. Phys. 75, 5575 (1981)

    Article  ADS  Google Scholar 

  46. M.A. Kaminsky, R.T. Hawkins, F.V. Kowalski, A.L. Schawlow: Identifiction of absorption lines by modulated lower-level population: Spectrum of Na2. Phys. Rev. Lett. 36, 671 (1976)

    Article  ADS  Google Scholar 

  47. A.L. Schawlow: Simplifying spectra by laser labelling. Phys. Scripta 25, 333 (1982)

    Article  ADS  Google Scholar 

  48. D.P. O’Brien, S. Swain: Theory of bandwidth induced asymmetry in optical double resonances. J. Phys. B 16, 2499 (1983)

    Article  ADS  Google Scholar 

  49. S.A. Edelstein, T.F. Gallagher: ‘Rydberg atoms’. In: Adv. At. Mol. Phys. 14, 365 (Academic, New York 1978)

    Article  ADS  Google Scholar 

  50. I.I. Sobelman: Atomic Spectra and Radiative Transitions, 2nd edn., Springer Ser. Atoms and Plasmas, Vol. 12 (Springer, Berlin, Heidelberg 1992)

    Book  Google Scholar 

  51. R.F. Stebbings, F.B. Dunnings (Eds.): Rydberg States of Atoms and Molecules (Cambridge Univ. Press, Cambridge 1983)

    Google Scholar 

  52. H. Figger: Experimente an Rydberg-Atomen und Molekülen. Phys. in unserer Zeit 15, 2 (1984)

    Article  ADS  Google Scholar 

  53. J.A.C. Gallas, H. Walther, E. Werner: Simple formula for the ionization rate of Rydberg states in static electric fields. Phys. Rev. Lett. 49, 867 (1982)

    Article  ADS  Google Scholar 

  54. C.E. Theodosiou: Lifetimes of alkali-metal-atom Rydberg states. Phys. Rev. A 30, 2881 (1984)

    Article  ADS  Google Scholar 

  55. J. Neukammer, H. Rinneberg, K. Vietzke, A. König, H. Hyronymus, M. Kohl, H.J. Grabka: Spectroscopy of Rydberg atoms at n = 500. Phys. Rev. Lett. 59, 2847 (1987)

    Article  ADS  Google Scholar 

  56. K.H. Weber, K. Niemax: Impact broadening of very high Rb Rydberg levels by Xe. Z. Physik A 312, 339 (1983)

    Article  ADS  Google Scholar 

  57. K. Heber, P.J. West, E. Matthias: Pressure shift and broadening of SnI Rydberg states in noble gases. Phys. Rev. A 37, 1438 (1988)

    Article  ADS  Google Scholar 

  58. R. Beigang, W. Makat, A. Timmermann, P.J. West: Hyperfine-induced n-mixing in high Rydberg states of 87Sr. Phys. Rev. Lett. 51, 771 (1983)

    Article  ADS  Google Scholar 

  59. T.F. Gallagher, W.E. Cooke: Interaction of blackbody radiation with atoms. Phys. Rev. Lett. 42, 835 (1979)

    Article  ADS  Google Scholar 

  60. L. Holberg, J.L. Hall: Measurements of the shift of Rydberg energy levels induced by blackbody radiation. Phys. Rev. Lett. 53, 230 (1984)

    Article  ADS  Google Scholar 

  61. H. Figger, G. Leuchs, R. Strauchinger, H. Walther: A photon detector for sub-millimeter wavelengths using Rydberg atoms. Opt. Commun. 33, 37 (1980)

    Article  ADS  Google Scholar 

  62. D. Wintgen, H. Friedrich: Classical and quantum mechanical transition between regularity and irregularity. Phys. Rev. A 35 1464 (1987)

    Article  ADS  Google Scholar 

  63. G. Raithel, M. Fauth, H. Walther: Quasi-Landau resonances in the spectra of rubidium Rydberg atoms in crossed electric and magnetic fields. Phys. Rev. A 44, 1898 (1991)

    Article  ADS  Google Scholar 

  64. G. Wunner: Gibt es Chaos in der Quantenmechanik? Phys. Blätter 45, 139 (Mai 1989);

    Article  Google Scholar 

  65. M. Gutzwiller: Chaos in Classical and Quantum Mechanics (Springer, Berlin, Heidelberg 1990)

    MATH  Google Scholar 

  66. A. Holle, J. Main, G. Wiebusch, H. Rottke, K.H. Welge: ‘Laser spectroscopy of the diamagnetic hydrogen atom in the chaotic region’. In: Atomic Spectra and Collisions in External Fields, ed. by K.T. Taylor, M.H. Nayfeh, C.W. Clark (Plenum, New York 1988)

    Google Scholar 

  67. P. Meystre, M. Sargent III: Elements of Quantum Optics, 2nd edn. (Springer, Berlin, Heidelberg 1991)

    Book  Google Scholar 

  68. H. Held, J. Schlichter, H. Walther: Quantum chaos in Rydberg atoms. Lecture Notes in Physics 503, 1 (1998)

    Article  ADS  Google Scholar 

  69. A. Holle, G. Wiebusch, J. Main, K.H. Welge, G. Zeller, G. Wunner, T. Ertl, H. Ruder: Hydrogenic Rydberg atoms in strong magnetic fields. Z. Physik D 5, 271 (1987)

    Article  ADS  Google Scholar 

  70. H. Rottke, K.H. Welge: Photoionization of the hydrogen atom near the ionization limit in strong electric field. Phys. Rev. A 33, 301 (1986)

    Article  ADS  Google Scholar 

  71. C. Fahre, S. Haroche: ‘Spectroscopy of one- and two-electron Rydberg atoms’. In: Rydberg States of Atoms and Molecules, ed. by R.F. Stebbings, F.B. Dunnings (Cambridge Univ. Press, Cambridge 1983)

    Google Scholar 

  72. J. Boulmer, P. Camus, P. Pillet: Autoionizing Double Rydberg States in Barium, ed. by H.B. Gilbody, W.R. Newell, F.H. Read, A.C. Smith (Elsevier, Amsterdam 1988)

    Google Scholar 

  73. J. Boulmer, P. Camus, P. Pillet: Double Rydberg spectroscopy of the barium atom. J. Opt. Soc. Am. B 4, 805 (1987)

    Article  ADS  Google Scholar 

  74. I.C. Percival: Planetary atoms. Proc. Roy. Soc. London A 353, 289 (1977)

    Article  ADS  Google Scholar 

  75. R.S. Freund: ‘High Rydberg molecules’. In: Rydberg States of Atoms and Molecules, ed. by R.F. Stebbing, F.B. Dunning (Cambridge Univ. Press, Cambridge 1983);

    Google Scholar 

  76. G. Herzberg: Rydberg molecules. Ann. Rev. Phys. Chem. 38, 27 (1987)

    Article  ADS  Google Scholar 

  77. R.A. Bernheim, L.P. Gold, T. Tipton: Rydberg states of 7Li2 by pulsed optical-optical double resonance spectroscopy. J. Chem. Phys. 78, 3635 (1983);

    Article  ADS  Google Scholar 

  78. D. Eisel, W. Demtröder, W. Müller, P. Botschwina: Autoionization spectra of Li2 and the XMATH ground state of MATH. Chem. Phys. 80, 329 (1983)

    Article  Google Scholar 

  79. M. Schwarz, R. Duchowicz, W. Demtröder, C. Jungen: Autoionizing Rydberg states of Li2: analysis of electronic-rotational interactions. J. Chem. Phys. 89, 5460 (1988)

    Article  ADS  Google Scholar 

  80. C.H. Greene, C. Jungen: ‘Molecular applications of quantum defect theory’. In: Adv. At Mol. Phys. 21, 51 (Academic, New York 1985)

    Article  ADS  Google Scholar 

  81. F. Merkt: Molecules in high Rydberg states. Ann. Rev. Phys. Chemistry 48, 675 (1997);

    Article  ADS  Google Scholar 

  82. F. Merkt: Chimica 54, 89 (2000)

    Google Scholar 

  83. A. Osterwalder, F. Merkt: High resolution spectroscopy of high Rydberg states. Chimica 54, 89 (2000)

    Google Scholar 

  84. S. Fredin, D. Gauyacq, M. Horani, C. Jungen, G. Lefevre, F. Masnou-Seeuws: S and d Rydberg series of NO probed by double resonance multiphoton ionization. Mol. Phys. 60, 825 (1987)

    Article  ADS  Google Scholar 

  85. U. Aigner, L.Y. Baranov, H.L. Selzle, E.W. Schlag: Lifetime enhancement of ZEKE-states in molecular clusters and cluster fragmentation. J. Electron. Spectrosc. Rci. Phenom. 112, 175 (2000)

    Article  Google Scholar 

  86. M. Sander, L.A. Chewter, K. Müller-Dethlefs, E.W. Schlag: High-resolution zero-kinetic-energy photoelectron spectroscopy of NO. Phys. Rev. A 36, 4543 (1987)

    Article  ADS  Google Scholar 

  87. K. Müller-Dethlefs, E.W. Schlag: High-resolution ZEKE photoelectron spectroscopy of molecular systems. Ann. Rev. Phys. Chem. 42, 109 (1991);

    Article  ADS  Google Scholar 

  88. E.R. Grant, M.G. White: ZEKE threshold photoelectron spectroscopy. Nature 354, 249 (1991)

    Article  ADS  Google Scholar 

  89. C.E.H. Descent, K. Müller-Dethlefs: Hydrogen-bonding and van der Waals Complexes Studies by ZEKE and REMP Spectroscopy. Chem. Rev. 100, 3999 (2000)

    Article  Google Scholar 

  90. R. Signorelli, U. Hollenstein, F. Merkt: PFI-ZEKE photo electron spectroscopy study of the first electronic states of MATH. J. Chem. Phys. 114, 9840 (2001)

    Article  ADS  Google Scholar 

  91. P. Goy, M. Bordas, M. Broyer, P. Labastie, B. Tribellet: Microwave transitions between molecular Rydberg states. Chem. Phys. Lett. 120, 1 (1985)

    Article  ADS  Google Scholar 

  92. P. Filipovicz, P. Meystere, G. Rempe, H. Walther: Rydberg atoms, a testing ground for quantum electrodynamics. Opt. Acta 32, 1105 (1985)

    ADS  Google Scholar 

  93. C.J. Latimer: Recent experiments involving highly excited atoms. Contemp. Phys. 20, 631 (1979)

    Article  ADS  Google Scholar 

  94. J.C. Gallas, G. Leuchs, H. Walther, H. Figger: ‘Rydberg atoms: High resolution spectroscopy’. In: Adv. At. Mol. Phys. 20, 414 (Academic, New York 1985)

    ADS  Google Scholar 

  95. G. Alber, P. Zoller: Laser-induced excitation of electronic Rydberg wave packets. Contemp. Phys. 32, 185 (1991)

    Article  ADS  Google Scholar 

  96. K. Harth, M. Raab, H. Hotop: Odd Rydberg spectrum of 20Ne: High resolution laser spectroscopy and MQDT analysis. Z. Physik D 7, 219 (1987)

    Article  ADS  Google Scholar 

  97. V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977) Chap.5

    Book  Google Scholar 

  98. T. Hänsch, P. Toschek: Theory of a three-level gas laser amplifier. Z. Physik 236, 213 (1970)

    Article  ADS  Google Scholar 

  99. C. Kitrell, E. Abramson, J.L. Kimsey, S.A. McDonald, D.E. Reisner, R.W. Field, D.H. Katayama: Selective vibrational excitation by stimulated emission pumping. J. Chem. Phys. 75, 2056 (1981)

    Article  ADS  Google Scholar 

  100. Hai-Lung Da (Guest Ed.): Molecular spectroscopy and dynamics by stimulated-emission pumpings. J. Opt. Soc. Am. B 7, 1802 (1990)

    Google Scholar 

  101. G. Zhong He, A. Kuhn, S. Schiemann, K. Bergmann: Population transfer by stimulated Raman scattering with delayed pulses and by the stimulated-emission pumping method: A comperative study. J. Opt. Soc. Am. B 7, 1960 (1990)

    Article  ADS  Google Scholar 

  102. K. Yamanouchi, H. Yamada, S. Tsuciya: Vibrational levels structure of highly excited SO2 in the electronic ground state as studied by stimulated emission pumping spectroscopy. J. Chem. Phys. 88, 4664 (1988)

    Article  ADS  Google Scholar 

  103. U. Brinkmann: Higher sensitivity and extended frequency range via stimulated emission pumping SEP. Lamda Physik Highlights (June 1990) p. 1

    Google Scholar 

  104. H. Weickenmeier, V. Diemer, M. Wahl, M. Raab, W. Demtröder, W. Müller: Accurate ground state potential of Cs2 up to the dissociation limit. J. Chem. Phys. 82, 5354 (1985)

    Article  ADS  Google Scholar 

  105. H. Weickemeier, U. Diemer, W. Demtröder, M. Broyer: Hyperfine interaction between the singlet and triplet ground states of Cs2. Chem. Phys. Lett. 124, 470 (1986)

    Article  ADS  Google Scholar 

  106. R. Teets, R. Feinberg, T.W. Hänsch, A.L. Schawlow: Simplification of spectra by polarization labelling. Phys. Rev. Lett. 37, 683 (1976)

    Article  ADS  Google Scholar 

  107. N.W. Carlson, A.J. Taylor, K.M. Jones, A.L. Schawlow: Two step polarization-labelling spectroscopy of excited states of Na2. Phys. Rev. A 24, 822 (1981)

    Article  ADS  Google Scholar 

  108. B. Hemmerling, R. Bombach, W. Demtröder, N. Spies: Polarization labelling spectroscopy of molecular Li2 Rydberg states. Z. Physik D 5, 165 (1987)

    Article  ADS  Google Scholar 

  109. W.E. Ernst: Microwave optical polarization spectroscopy of the X 2S state of SrF. Appl. Phys. B 30, 2378 (1983)

    Article  Google Scholar 

  110. W.E. Ernst, T. Törring: Hyperfine Structure in the X 2S state of CaCl, measured with microwave optical polarization spectroscopy. Phys. Rev. A 27, 875 (1983)

    Article  ADS  Google Scholar 

  111. W.E. Ernst, O. Golonska: Microwave transitions in the Na3 cluster. Phys. Rev. Lett., submitted (2002)

    Google Scholar 

  112. Th. Weber, E. Riedle, H.J. Neusser: Rotationally resolved fluorescence dip and ion-dip spectra of single rovibronic states of benzene. J. Opt. Soc. Am. B 7, 1875 (1990)

    Article  ADS  Google Scholar 

  113. M. Takayanagi, I. Hanazaki: Fluorescence dip and stimulated emission-pumping laser-induced-fluorescence spectra of van der Waals molecules. J. Opt. Soc. Am. B 7, 1878 (1990)

    Article  ADS  Google Scholar 

  114. H.S. Schweda, G.K. Chawla, R.W. Field: Highly excited, normally inaccessible vibrational levels by sub-Doppler modulated gain spectroscopy. Opt. Commun. 42, 165 (1982)

    Article  ADS  Google Scholar 

  115. M. Elbs, H. Knöckel, T. Laue, C. Samuelis, E. Tiemann: Observation of the last bound levels near the Na2 ground state asymptote. Phys. Rev. A 59, 3665 (1999)

    Article  ADS  Google Scholar 

  116. A. Crubellier, O. Dulieu, F. Masnou-Seeuws, M. Elbs, H. Knöckel, E. Tiemann: Simple determination of Na2 scattering lengths using observed bound levels of the ground state asymptote. Eur. Phys. J. D 6, 211 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2003). Optical Pumping and Double-Resonance Techniques. In: Laser Spectroscopy. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05155-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05155-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05157-3

  • Online ISBN: 978-3-662-05155-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics