Skip to main content

Discrete Geometry for Algebraic Elimination

  • Conference paper
Algebra, Geometry and Software Systems

Abstract

Multivariate resultants provide efficient methods for eliminating variables in algebraic systems. The theory of toric (or sparse) elimination generalizes the results of the classical theory to polynomials described by their supports, thus exploiting their sparseness. This is based on a discrete geometric model of the polynomials and requires a wide range of geometric notions as well as algorithms. This survey introduces toric resultants and their matrices, and shows how they reduce system solving and variable elimination to a problem in linear algebra. We also report on some practical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Busé, M. Elkadi, and B. Mourrain. Residual resultant of complete intersection. J. Pure & Applied Algebra, 164: 35–57, 2001.

    Article  MATH  Google Scholar 

  2. J.F. Canny and I.Z. Emiris. A subdivision-based algorithm for the sparse resultant. J. ACM, 47 (3): 417–451, May 2000.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.F. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial equations faster. In Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, pages 121–128, 1989. ACM Press.

    Google Scholar 

  4. J. Canny and P. Pedersen. An algorithm for the Newton resultant. Technical Report 1394, Comp. Science Dept., Cornell University, 1993.

    Google Scholar 

  5. D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Number 185 in Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  6. A. Diaz, I.Z. Emiris, E. Kaltofen, and V.Y. Pan. Algebraic algorithms. In M.J. Atallah, editor, Handbook of Algorithms and Theory of Computation, chapter 16. CRC Press, Boca Raton, Florida, 1999.

    Google Scholar 

  7. C. D’Andrea. Macaulay-style formulas for the sparse resultant. Trans. of the AMS, 354: 2595–2629, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. D’Andrea and I.Z. Emiris. Hybrid resultant matrices of bivariate polynomials. In Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, pages 24–31, London, Ontario, 2001. ACM Press.

    Google Scholar 

  9. C. D’Andrea and I.Z. Emiris. Computing sparse projection operators. In Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, vol. 286, AMS Contemporary Mathematics, pp. 121–139, Providence, Rhode Island, AMS, 2001.

    Google Scholar 

  10. A. Dickenstein and I.Z. Emiris. Multihomogeneous resultant matrices. In Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, pp. 46–54, Lille, France, 2002. ACM Press, 2002.

    Google Scholar 

  11. I.Z. Emiris. On the complexity of sparse elimination. J. Complexity, 12: 134–166, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. I.Z. Emiris. A general solver based on sparse resultants: Numerical issues and kinematic applications. Technical Report 3110, Projet SAFIR, INRIA Sophia-Antipolis, France, 1997.

    Google Scholar 

  13. I.Z. Emiris. Enumerating a subset of the integer points inside a Minkowski sum. Comp. Geom.: Theory & Appl., Spec. Issue, 20 (1–3): 143–166, 2002.

    Article  MathSciNet  Google Scholar 

  14. I.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symbolic Computation, 20 (2): 117–149, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  15. I.Z. Emiris and B. Mourrain. Computer algebra methods for studying and computing molecular conformations. Algorithmica, Special Issue on Algorithms for Computational Biology, 25: 372–402, 1999.

    MathSciNet  Google Scholar 

  16. I.Z. Emiris and B. Mourrain. Matrices in elimination theory. J. Symbolic Computation, Special Issue on Elimination, 28: 3–44, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. I.Z. Emiris and V.Y. Pan. Symbolic and numeric methods for exploiting structure in constructing resultant matrices. J. Symbolic Computation, 33: 393–413, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  18. I.Z. Emiris and J. Verschelde. How to count efficiently all affine roots of a polynomial system. Discrete Applied Math., Special Issue on Comput. Geom., 93 (1): 21–32, 1999.

    MathSciNet  MATH  Google Scholar 

  19. G. Ewald. Combinatorial Convexity and Algebraic Geometry. Springer, New York, 1996.

    Book  MATH  Google Scholar 

  20. J.-C. Faugère. A new efficient algorithm for computing Gröbner Bases (F4). J. Pure & Applied Algebra, 139 (1–3): 61–88, 1999.

    Article  MATH  Google Scholar 

  21. T. Gao, T.Y. Li, and X. Wang. Finding isolated zeros of polynomial systems in Cm with stable mixed volumes. J. Symbolic Computation, 28: 187–211, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  22. I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants and Resultants. Birkhäuser, Boston, 1994.

    Book  MATH  Google Scholar 

  23. B. Huber and B. Sturmfels. Bernstein’s theorem in affine space. Discr. and Computational Geometry, 17 (2): 137–142, March 1997.

    Article  MathSciNet  MATH  Google Scholar 

  24. T.Y. Li. Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numerica, pages 399–436, 1997.

    Google Scholar 

  25. F.S. Macaulay. Some formulae in elimination. Proc. London Math. Soc., 1 (33): 3–27, 1902.

    Article  MathSciNet  Google Scholar 

  26. V.Y. Pan. Solving a polynomial equation: Some history and recent progress. SIAM Rev., 39 (2): 187–220, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, 1993.

    Book  MATH  Google Scholar 

  28. B. Sturmfels. On the Newton polytope of the resultant. J. of Algebr. Combinatorics, 3: 207–236, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Sturmfels. Introduction to Resultants. In Applic. Computational Algebr. Geom., D.A. Cox and B. Sturmfels, eds., vol. 53, Proc. Symp. Applied Math., AMS, pages 25–39, 1998.

    Google Scholar 

  30. B. Sturmfels and A. Zelevinsky. Multigraded resultants of Sylvester type. J. of Algebra, 163 (1): 115–127, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Verschelde and K. Gatermann. Symmetric Newton polytopes for solving sparse polynomial systems. Adv. Appl. Math., 16 (1): 95–127, 1995.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emiris, I.Z. (2003). Discrete Geometry for Algebraic Elimination. In: Joswig, M., Takayama, N. (eds) Algebra, Geometry and Software Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05148-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05148-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05539-3

  • Online ISBN: 978-3-662-05148-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics