Advertisement

Discrete Geometry for Algebraic Elimination

  • Ioannis Z. Emiris
Conference paper

Abstract

Multivariate resultants provide efficient methods for eliminating variables in algebraic systems. The theory of toric (or sparse) elimination generalizes the results of the classical theory to polynomials described by their supports, thus exploiting their sparseness. This is based on a discrete geometric model of the polynomials and requires a wide range of geometric notions as well as algorithms. This survey introduces toric resultants and their matrices, and shows how they reduce system solving and variable elimination to a problem in linear algebra. We also report on some practical experience.

Keywords

Matrix Polynomial Polynomial System Integer Point Mixed Volume Common Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Busé, M. Elkadi, and B. Mourrain. Residual resultant of complete intersection. J. Pure & Applied Algebra, 164: 35–57, 2001.MATHCrossRefGoogle Scholar
  2. 2.
    J.F. Canny and I.Z. Emiris. A subdivision-based algorithm for the sparse resultant. J. ACM, 47 (3): 417–451, May 2000.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    J.F. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial equations faster. In Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, pages 121–128, 1989. ACM Press.Google Scholar
  4. 4.
    J. Canny and P. Pedersen. An algorithm for the Newton resultant. Technical Report 1394, Comp. Science Dept., Cornell University, 1993.Google Scholar
  5. 5.
    D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Number 185 in Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.MATHGoogle Scholar
  6. 6.
    A. Diaz, I.Z. Emiris, E. Kaltofen, and V.Y. Pan. Algebraic algorithms. In M.J. Atallah, editor, Handbook of Algorithms and Theory of Computation, chapter 16. CRC Press, Boca Raton, Florida, 1999.Google Scholar
  7. 7.
    C. D’Andrea. Macaulay-style formulas for the sparse resultant. Trans. of the AMS, 354: 2595–2629, 2002.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    C. D’Andrea and I.Z. Emiris. Hybrid resultant matrices of bivariate polynomials. In Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, pages 24–31, London, Ontario, 2001. ACM Press.Google Scholar
  9. 9.
    C. D’Andrea and I.Z. Emiris. Computing sparse projection operators. In Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, vol. 286, AMS Contemporary Mathematics, pp. 121–139, Providence, Rhode Island, AMS, 2001.Google Scholar
  10. 10.
    A. Dickenstein and I.Z. Emiris. Multihomogeneous resultant matrices. In Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, pp. 46–54, Lille, France, 2002. ACM Press, 2002.Google Scholar
  11. 11.
    I.Z. Emiris. On the complexity of sparse elimination. J. Complexity, 12: 134–166, 1996.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    I.Z. Emiris. A general solver based on sparse resultants: Numerical issues and kinematic applications. Technical Report 3110, Projet SAFIR, INRIA Sophia-Antipolis, France, 1997.Google Scholar
  13. 13.
    I.Z. Emiris. Enumerating a subset of the integer points inside a Minkowski sum. Comp. Geom.: Theory & Appl., Spec. Issue, 20 (1–3): 143–166, 2002.MathSciNetCrossRefGoogle Scholar
  14. 14.
    I.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symbolic Computation, 20 (2): 117–149, 1995.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    I.Z. Emiris and B. Mourrain. Computer algebra methods for studying and computing molecular conformations. Algorithmica, Special Issue on Algorithms for Computational Biology, 25: 372–402, 1999.MathSciNetGoogle Scholar
  16. 16.
    I.Z. Emiris and B. Mourrain. Matrices in elimination theory. J. Symbolic Computation, Special Issue on Elimination, 28: 3–44, 1999.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    I.Z. Emiris and V.Y. Pan. Symbolic and numeric methods for exploiting structure in constructing resultant matrices. J. Symbolic Computation, 33: 393–413, 2002.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    I.Z. Emiris and J. Verschelde. How to count efficiently all affine roots of a polynomial system. Discrete Applied Math., Special Issue on Comput. Geom., 93 (1): 21–32, 1999.MathSciNetMATHGoogle Scholar
  19. 19.
    G. Ewald. Combinatorial Convexity and Algebraic Geometry. Springer, New York, 1996.MATHCrossRefGoogle Scholar
  20. 20.
    J.-C. Faugère. A new efficient algorithm for computing Gröbner Bases (F4). J. Pure & Applied Algebra, 139 (1–3): 61–88, 1999.MATHCrossRefGoogle Scholar
  21. 21.
    T. Gao, T.Y. Li, and X. Wang. Finding isolated zeros of polynomial systems in Cm with stable mixed volumes. J. Symbolic Computation, 28: 187–211, 1999.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants and Resultants. Birkhäuser, Boston, 1994.MATHCrossRefGoogle Scholar
  23. 23.
    B. Huber and B. Sturmfels. Bernstein’s theorem in affine space. Discr. and Computational Geometry, 17 (2): 137–142, March 1997.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    T.Y. Li. Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numerica, pages 399–436, 1997.Google Scholar
  25. 25.
    F.S. Macaulay. Some formulae in elimination. Proc. London Math. Soc., 1 (33): 3–27, 1902.MathSciNetCrossRefGoogle Scholar
  26. 26.
    V.Y. Pan. Solving a polynomial equation: Some history and recent progress. SIAM Rev., 39 (2): 187–220, 1997.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, 1993.MATHCrossRefGoogle Scholar
  28. 28.
    B. Sturmfels. On the Newton polytope of the resultant. J. of Algebr. Combinatorics, 3: 207–236, 1994.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    B. Sturmfels. Introduction to Resultants. In Applic. Computational Algebr. Geom., D.A. Cox and B. Sturmfels, eds., vol. 53, Proc. Symp. Applied Math., AMS, pages 25–39, 1998.Google Scholar
  30. 30.
    B. Sturmfels and A. Zelevinsky. Multigraded resultants of Sylvester type. J. of Algebra, 163 (1): 115–127, 1994.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    J. Verschelde and K. Gatermann. Symmetric Newton polytopes for solving sparse polynomial systems. Adv. Appl. Math., 16 (1): 95–127, 1995.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ioannis Z. Emiris
    • 1
    • 2
  1. 1.INRIA Sophia-AntipolisFrance
  2. 2.Dept. of Informatics & TelecommunicationsUniversity of AthensGreece

Personalised recommendations