Semiconductor Optical Amplifiers with Bragg Gratings

  • G. P. Agrawal
  • D. N. Maywar
Part of the Springer Series in Photonics book series (PHOTONICS, volume 10)


Nonlinear periodic structures can be made using a variety of materials including fibers and semiconductors. Fiber Bragg gratings are the subject of much research and, indeed, are the focus of several chapters in this book. In this chapter, we consider a Bragg grating fabricated within a semiconductor optical amplifier (SOA). The strong carrier-induced nonlinearity and the resulting nonlinear shift of the Bragg resonances are discussed in Sect. 13.2. The origin and characteristics of bistable switching, a common nonlinear response that occurs at powers as low as 1 μW, are discussed in Sect. 13.3. Section 13.4 is devoted to a simple theoretical model for investigating the nonlinear response of Bragg-grating SOAs. In Sect.13.5, we consider Bragg-grating SOAs in the context of a broader class of devices referred to as resonant-type SOAs. In Sect. 13.6, potential applications in the domain of fiber-optic communication systems are discussed, emphasizing the features of all-optical switching and memory.


Fiber Bragg Grating Photonic Bandgap Carrier Lifetime Hysteresis Curve Optical Bistability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kawaguchi: IEE Proc., Pt. J 140, 3 (1993)Google Scholar
  2. 2.
    R.J. Manning, A.D. Ellis, A.J. Poustie, and K.J. Blow: J. Opt. Soc. Am. B 14, 3204 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    W.F. Sharfin and M. Dagenais: Appl. Phys. Lett. 48, 1510 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    G.P. Agrawal and N.A. Olsson: IEEE J. Quantum Electron. 25, 2297 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    G.P. Agrawal and N.K. Dutta, Semiconductor Lasers, 2nd edn. ( New York, Van Nostrand Reinhold 1993 )Google Scholar
  6. 6.
    M.J. Adams and R.J. Wyatt: IEE Proc., Pt. J 134, 35 (1987)Google Scholar
  7. 7.
    D.N. Maywar and G.P. Agrawal: IEEE J. Quantum Electron. 33, 2029 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    H. Kawaguchi, K. Inoue, T. Matsuoka, and K Otsuka: IEEE J. Quantum Electron. 21, 1314 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    R. Wyatt and M.J. Adams, CLEO R6 MB5 (San Fransisco, CA 1986 )Google Scholar
  10. 10.
    H.G. Winful, J.H. Marburger, and E. Garmire: Appl. Phys. Lett. 35, 379 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    K. Magari, H. Kawaguchi, K. 0e, and M. Fukuda: IEEE J. Quantum Electron. 24, 2178 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    G.H.M. van Tartwijk, H. de Waardt, B.H. Verbeek, and D. Lenstra: IEEE J. Quantum Electron. 30, 1763 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    R. Calvani, M. Calzavara, and R. Caponi: Proc. SPIE 1787, 134 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    N. Ogasawara and R. Ito: Jpn. J. Appl. Phys. 25, L739 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Adams: Opt. Quantum Electron. 19, S37 (1987)CrossRefGoogle Scholar
  16. 16.
    D.N. Maywar and G.P. Agrawal: IEEE J. Quantum Electron. 34, 2364 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    D.N. Maywar and G.P. Agrawal: Optics Express 3, 440 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    P. Meystre: Optics Comm 26, 277 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    W.F. Sharfin and M. Dagenais: IEEE J. Quantum Electron. 23, 303 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    T. Nakai, N. Ogasawara, and R. Ito: Jpn. J. Appl. Phys. 22, 1184 (1983)CrossRefGoogle Scholar
  21. 21.
    K. Otsuka and S. Kobayashi: Electronic Lett. 19, 262 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    M.J. Adams: Int. J. Electron. 60, 123 (1986)CrossRefGoogle Scholar
  23. 23.
    M.J. Adams: Solid-State Electron. 30, 43 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    M. Dagenais and W.F. Sharfin: Proc. SPIE 881, 80 (1988)CrossRefGoogle Scholar
  25. 25.
    N. Chinone and M. Okai, “Distributed Feedback Semiconductor Lasers,” in Semiconductor Lasers: Past, Present, and Future, G.P. Agrawal, Ed. (New York, AIP Press, 1995) Chap. 2Google Scholar
  26. 26.
    D.N. Maywar, G.P. Agrawal, and Y. Nakano: Optics Express 6, 75 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    D.N. Maywar, Y. Nakano, and G.P. Agrawal: IEEE Photonics Tech. Lett. 12, 858 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    R. Hui and A. Sapia: Opt. Lett. 15, 956 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Pan, H. Lin, and M. Dagenais: Appl. Phys. Lett. 58, 687 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    Z. Pan and M. Dagenais: IEEE Photon. Tech. Lett. 4, 1054 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    K. Inoue: Electron. Lett. 23, 921 (1987)CrossRefGoogle Scholar
  32. 32.
    W.F. Sharfin and M. Dagenais: Appl. Phys. Lett. 48, 321 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    R.J. Manning, and D.A.O. Davies, and J.K. Lucek: Electron. Lett. 30, 1233 (1994)CrossRefGoogle Scholar
  34. 34.
    R.P. Webb: Opt. Quantum Electron. 19, S57 (1987)CrossRefGoogle Scholar
  35. 35.
    P. Horowitz and W. Hill, The Art of Electronics, 2nd edn. ( New York, Cambridge University Press 1989 ) Chap. 8Google Scholar
  36. 36.
    K. Inoue: Opt. Lett. 12, 918 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • G. P. Agrawal
  • D. N. Maywar

There are no affiliations available

Personalised recommendations