Pulsed Interactions in Nonlinear Fiber Bragg Gratings

  • M. J. Steel
  • N. G. R. Broderick
Part of the Springer Series in Photonics book series (PHOTONICS, volume 10)


Multiple frequency interactions in fiber Bragg gratings provide fertile ground for new nonlinear effects. Exploiting the unusual dispersive properties of fiber gratings permits new techniques for both pulse compression and frequency conversion. Combined with cross-phase modulation, the grating allows rapid compression and acceleration of a weak pulse in a grating while parametric amplification of a weak pulse is automatically phase-matched, regardless of the underlying material dispersion. We present theoretical descriptions of both these effects and analyze the first series of experiments which have successfully demonstrated compression due to cross-phase modulation in a grating — the Optical Pushbroom.


Pump Power Fiber Bragg Grating Pump Pulse Probe Pulse Pulse Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. G. Winful, J. H. Marburger, and E. Garmire: Appl. Phys. Lett. 35, 379 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    W. Chen and D. L. Mills: Phys. Rev. B 35, 524 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    A. B. Aceves and S. Wabnitz: Phys. Lett. A 141, 37 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    C. M. de Sterke and J. E. Sipe, in Progress in Optics XXXIII, E. Wolf, Ed. (Elsevier, Amsterdam 1994), Chap. III Gap Solitons, pp. 203–260Google Scholar
  5. 5.
    B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe: Phys. Rev. Lett. 76, 1627 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Isben: Opt. Lett. 23, 328 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    A. Ashkin and A. Yariv, “Bell Labs. Tech. Memo No. MM–61–124–46,” 13 November 1961Google Scholar
  8. 8.
    N. Bloembergen and A. J. Sievers: Appl. Phys. Lett. 17, 483 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    C. L. Tang and P. P. Bey: IEEE J. Quantum Electron. QE-9, 9 (1973)Google Scholar
  10. 10.
    J. P. van der Ziel and M. Ilegems: Appl. Phys. Lett. 28, 437 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Belyakov and N. V. Shipov: Phys. Lett. 86A, 94 (1981)CrossRefGoogle Scholar
  12. 12.
    V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Springer, Berlin Heidelberg New York 1992) Chap. 6, pp. 188–205Google Scholar
  13. 13.
    J. Martorell and R. Corbaldn: Opt. Commun. 108, 319 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    J. Trull, R. Vilaseca, J. Martorell, and R. Corbalân: Opt. Lett. 20, 1746 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Y. S. Kivshar: Phys. Rev. E 51, 1613 (1995)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    C. Conti, G. Assanto, and S. Trillo: Optics Express 3, 389 (1998)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    C. Conti, S. Trillo, and G. Assanto: Phys. Rev. E 57, R1251 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    A. Yariv and P. Yeh: J. Opt. Soc. Am. 67, 438 (1977)ADSCrossRefGoogle Scholar
  19. 19.
    C. M. de Sterke: Phys. Rev. A 45, 8252 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    M. J. Steel and C. M. de Sterke: Phys. Rev. A 49, 5048 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman: Electron. Lett. 26, 1459 (1990)CrossRefGoogle Scholar
  22. 22.
    A. Melloni, M. Chinello, and M. Martinelli: IEEE Photonics Technology Letters 12, 42 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    G. P. Agrawal, Nonlinear Fiber Optics ( Academic Press, San Diego 1989 )Google Scholar
  24. 24.
    P. L. Baldeck, P. P. Ho, and R. R. Alfano, “Cross-phase modulation: A new technique for controlling the spectral, temporal, and spatial properties of ultra-short pulses,” in The Supercontinuum Laser Source, R. R. Alfano, Ed. (Springer, Berlin Heidelberg New York 1989) Chap. 4, pp. 117–183Google Scholar
  25. 25.
    F. Gires and P. Tournois: Comptes Rendus Acad. Sci. (Paris) t. 258, 6112 (1964)Google Scholar
  26. 26.
    J. A. Giordmaine, M. A. Duguay, and J. W. Hansen: IEEE J. Quantum Electron. QE-4, 252 (1968)Google Scholar
  27. 27.
    L. F. Mollenauer, R. H. Stolen, and J. P. Gordon: Phys. Rev. Lett. 45, 1095 (1980)ADSCrossRefGoogle Scholar
  28. 28.
    L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson: Opt. Lett. 8, 289 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    E. B. Treacy: Phys. Lett. A 28A, 34 (1968)ADSCrossRefGoogle Scholar
  30. 30.
    E. B. Treacy: IEEE J. Quantum Electron. QE-5, 454 (454)Google Scholar
  31. 31.
    C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson. Appl. Phys. Lett. 40, 761 (1982)Google Scholar
  32. 32.
    B. Nikolaus and D. Grischkowsky: Appl. Phys. Lett. 42, 1 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    J. G. Fujimoto, A. M. Weiner, and E. P. Ippen: Appl. Phys. Lett. 44, 832 (1984)ADSCrossRefGoogle Scholar
  34. 34.
    J. -M. Halbout and D. Grischkowsky: Appt Phys. Lett. 45, 1281 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis: Appl. Phys. Lett. 46, 1120 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    J. -C. Diels and W. Rudolph, Ultrashort laser pulse phenomena ( Academic Press, San Diego, 1996 )Google Scholar
  37. 37.
    B. Jaskorzynska and D. Schadt: IEEE J. Quantum Electron. 24, 2117 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    J. E. Rothenberg: Opt. Lett. 15, 495 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    H. G. Winful: Appl. Phys. Lett. 46, 527 (1985)ADSCrossRefGoogle Scholar
  40. 40.
    B. J. Eggleton, G. Lenz, R. E. Slusher, and N. M. Litchinitser: Appl. Opt. 37, 7055 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    C. M. de Sterke: Opt. Lett. 17, 914 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    C. M. de Sterke, K. R. Jackson, and B. D. Robert: J. Opt. Soc. Am. B 8, 403 (1991)ADSCrossRefGoogle Scholar
  43. 43.
    M. J. Steel, D. G. A. Jackson, and C. M. de Sterke: Phys. Rev. A. 50, 3447 (1994)ADSCrossRefGoogle Scholar
  44. 44.
    N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming: Phys. Rev. Lett. 79, 4566 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming: Opt. Lett. 22, 1837 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    N. G. R. Broderick, D. J. Richardson, D. Taverner, and M. Isben: J. Opt. Soc. Am. B 16, 345–353 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    P. S. J. Russell and J. -L. Archambault: J. Phys. III France 4, 2471 (1994)CrossRefGoogle Scholar
  48. 48.
    M. J. Steel and C. M. de Sterke: Applied Optics 35, 3211 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    M. J. Steel and C. M. de Sterke: J. Opt. Soc. Am. B 12, 2445 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    M. J. Steel and C. M. de Sterke: Opt. Lett. 21, 420 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    M. J. Steel and C. M. de Sterke: Phys. Rev. E. 54, 4271 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    P. Millar, R. M. D. L. Rue, T. F. Krauss, J. S. Aitchson, N. G. R. Broderick, and D. J. Richardson: Opt. Lett. 24, 685 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. J. Steel
  • N. G. R. Broderick

There are no affiliations available

Personalised recommendations