Numerical Modelling of Transport Processes in the Subsurface

Chapter

Abstract

In this paper an overview is given about numerical modelling of transport processes in the subsurface. Numerical models enable a better process understanding, can determine local or global budgets and are able to make predictions for changing conditions. The physical and mathematical model concepts are introduced for subsurface transport processes in a single phase, water, and, briefly in two phases, water and gas. The last model concept is required to simulate flow and transport processes when e.g. free gas occurs. In many cases, flow and transport processes must be considered in two or three dimensions. Finite-Difference, Finite-Element and Finite-Volume Methods are discussed together with stabilization techniques which are required because of the advection / dispersion character of the basic equations. The authors give recommendations to the different methods. In the future the models can be further developed to simulate non-isothermal multiphase / multicomponent processes, which occur e.g. around gas hydrates.

Keywords

Permeability Porosity Methane Hydrate Convection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlag C, Hinkelmann R, Helmig R, Zielke W (1998) Adaptive Methods for Modelling Transport Processes in Fractured Subsurface Systems. In Proceedings of 3rd International Conference on Hydroscience and Engineering, CottbusGoogle Scholar
  2. Bastian P (1996) Parallele adaptive Mehrgitterverfahren. Teubner Skripte zur Numerik, Teubner-Verlag, StuttgartCrossRefGoogle Scholar
  3. Bárdossy A (1992) Geostatistical Methods: Recent Developments and Applications in Surface and Subsurface Hydrology. UNESCO, ParisGoogle Scholar
  4. Barret R et al. (1994) Templates for the Solution of Large Linear Systems: Building Blocks for Iterative Methods. SIAM, PhiladelphiaCrossRefGoogle Scholar
  5. Bear J (1972) Dynamics of Fluids in Porous Media. American Elsevier, New YorkGoogle Scholar
  6. Bear J, Bachmat Y (1990) Introduction to Modelling of Transport Penomena in Porous Media. Kluwer Academic Publishers, The NetherlandsCrossRefGoogle Scholar
  7. Celia MA et al. (1990) Eulerian-Lagrangian Localized Adjoint Method for the Advection-Diffusion Equation. Advances in Water Resources, 13 (4):187–206CrossRefGoogle Scholar
  8. Class H (2000) Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL — kontaminierten porösen Medien, Dissertation, Mitteilungen des Instituts für Wasserbau, Heft 105, Universität StuttgartGoogle Scholar
  9. Finlayson BA (1992) Numerical Methods for Problems with Moving Fronts. Ravenna Park Publishing, Seattle, WashingtonGoogle Scholar
  10. Helmig R (1997) Multiphase Flow and Transport Processes in the Subsurface — A Contribution to the Modelling of Hydrosystems. Springer, BerlinCrossRefGoogle Scholar
  11. Hinkelmann R, Zielke W (2000) Parallelization of a Lagrange-Euler-Model for 3D free surface flow and transport processes. Computers & Fluids, 29 (3):301–325CrossRefGoogle Scholar
  12. Hinkelmann R, Sheta H, Helmig R, Sauter EH, Schlüter M (2000) Numerical simulation ofwater-gas flow and transport processes in coastal aquifers. International Symposium 2000 on Groundwater IAHR: New Science and Technology for Sustainable Groundwater Environment, Sonic City, Japan. In: Sato K, Iwasa Y (eds) Groundwater Updates. Springer, BerlinGoogle Scholar
  13. Johnson C (1992) Numerical Solution of Partial Differential Equations. Cambridge University Press, New YorkGoogle Scholar
  14. Kinzelbach W (1992) Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser. 2. Auflage, R Oldenbourg Verlag, München, WienGoogle Scholar
  15. Oldenburg CM, Pruess K (1995) Dispersive transport dynamics in a strongly coupled groundwater-brine Flow System. Water Resources Research 31(2): 289–302CrossRefGoogle Scholar
  16. Malcherek A (2000) Numerische Methoden in der Hydrodynamik, Technical Documentation, Bundesanstalt für Wasserbau, Außenstelle Küste, HamburgGoogle Scholar
  17. Verfürth R (1996) A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. J Wiley & Sons and B G Teubner, New York, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.Institut für Wasserbau, Lehrstuhl für Hydromechanik und HydrosystemmodellierungUniversität StuttgartStuttgartGermany

Personalised recommendations