Skip to main content

The Importance of Mineralization Processes in Surface Sediments at Continental Margins

  • Chapter
Ocean Margin Systems

Abstract

This paper is intended to give a brief overview covering the main aspects of mineralization and preservation of organic carbon in continental margin sediments. It is not meant to be a comprehensive overview of the whole subject. Instead, we will summarise the relevant subjects, present data from a number of well studied sites from different areas of the world ocean and focus on the aspects of lateral sediment advection, the role of oxygen minimum zones and the preservation/ dissolution of calcium carbonate. We also summarise data compiled in different studies and compare it to global estimates to be able to better evaluate the role of mineralization in ocean margin sediments for the world oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RF, Rowe GT, Kemp PF, Trumbores S, Biscaye PE (1994) Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep-Sea Res II 41:669–703

    Google Scholar 

  • Antoine D, André JM, Morel A (1996) Oceanic primary production; 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob Biogeochem Cycl 10(1):57–69

    Article  Google Scholar 

  • Archer DE (1996) A data-driven model of the global calcite lysocline. Glob Biogeochem Cycl 10:511–526

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42(1):1–20

    Article  Google Scholar 

  • Berelson WM, Hammond DE, McManus J, Kilgore TE (1994) Dissolution kinetics of calcium carbonate in equatorial Pacific sediments. Glob Biogeochem Cycl 8:219–235

    Article  Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Am J Sci 282:451–473

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1987) The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob Biogeochem Cycl 1:15–29.

    Article  Google Scholar 

  • Canfield DE (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res 36:121–138

    Article  Google Scholar 

  • Canfield DE (1993) Organic matter oxidation in marine sediments. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P, and S in Biogeochemical Cycles and Global Change, NATO ASI Series 14, Springer, Berlin pp 333–363

    Chapter  Google Scholar 

  • Cai WJ, Reimers CE (1995) Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep-Sea Res 42:1681–1699

    Article  Google Scholar 

  • Christensen JP, Murray JW, Devol AH, Codispoti LA (1987) Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Glob Biogeochem Cycl 1:97–116

    Article  Google Scholar 

  • De Baar HJW, Suess E (1993) Ocean carbon cycle and climate change — An introduction to the interdisciplinary Union Symposium. Glob Planet Change 8: VII–XI

    Article  Google Scholar 

  • Demaison GJ, Moore GT (1980) Anoxic environments and oil source bed genesis. Org Geochem 2:9–31

    Article  Google Scholar 

  • Emerson S, Bender M (1981) Carbon fluxes at the sediment-water interface of the deep-sea; calcium carbonate preservation. J Mar Res 39:139–162

    Google Scholar 

  • Ferdelman TG, Lee C, Pantojy S, Harder J, Bebout BM, Fossing H (1997) Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile. Geochim Cosmochim Acta 61:3065–3079

    Article  Google Scholar 

  • Giraudeau J, Bailey GW, Pujol C (2000) A high-resolution time-series analyses ofparticle fluxes in the Northern Benguela coastal upwelling system: Carbonate record of changes in biogenic production and particle transfer processes. Deep-Sea Res II 47:1999–2028

    Google Scholar 

  • Haese RR (2002) Macrobenthic activity and its effects on biogeochemical reactions and fluxes. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 219–234

    Google Scholar 

  • Hales B, Emerson S (1997) Calcite dissolution in sediments of the Ceara Rise: In situ measurements of porewater O2, pH, and CO2(aq). Geochim Cosmochim Acta 61(3):501–514

    Article  Google Scholar 

  • Hartnett HE, Keil RG, Hedges JI, Devol AH (1998) Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–574

    Article  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean. Org Geochem 27(5/6):195–212

    Article  Google Scholar 

  • Henrichs SM (1992) Early diagenesis of organic matter in marine sediments: progress and perplexity. Mar Chem 39:119–149

    Article  Google Scholar 

  • Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5(3/4):191–237

    Article  Google Scholar 

  • Hensen C, Landenberger H, Zabel M, Schulz HD (1998) Quantification of diffusive benthic fluxes of nitrate, phosphate and silicate in the Southern Atlantic Ocean. Glob Biogeochem Cycl 12(1):193–210

    Article  Google Scholar 

  • Hensen C, Zabel M, Schulz HD (2000) A comparison of benthic nutrient fluxes from deep-sea sediments off Namibia and Argentina. Deep-Sea Res II 47:2029–2050

    Google Scholar 

  • Jahnke RA (1996) The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob Biogeochem Cycl 10:71–88

    Article  Google Scholar 

  • Jahnke RA, Jahnke DB (2000) Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depotcenter. Deep-Sea Res 47: 1405–1428

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed — the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Jorgensen BB (1983) Processes at the sediment-water interface. In: Bolin B, Cook RB (eds) The Major Biogeochemical Cycles and their Interactions. SCOPE, Wiley, New York, pp 477–515

    Google Scholar 

  • Kennish MJ (1997) Practical handbook of estuarine and marine pollution. CRC Press, Boca Raton, Florida, 524 p

    Google Scholar 

  • Ku TCW, Walter LM, Coleman ML, Blake RE, Martin AM (1999) Coupling between sulphur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulphur isotope composition ofpore water sulphate, South Florida Platform, USA. Geochim Cosmochim Acta 63(17):2529–2546

    Article  Google Scholar 

  • Liu KK, Atkinson L, Chen CTA, Gao S, Hall J, Macdonald RW, Talaue McManus L, Quiòones R (2000) Are continental margin carbon fluxes sig- nificant to the global ocean carbon budget? EOS 81(52): 641–644

    Article  Google Scholar 

  • Lohse L, Helder W, Epping EHG, Balzer W (1998) Recycling of organic matter along a shelf-slope transect across the NW European Continental Margin (Goban Spur). Prog Oceanogr 42:77–110

    Article  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17(6):1245–1271

    Article  Google Scholar 

  • Mackenzie FT, Ver LM, Sabine C, Lane M, Lerman A (1993) C, N, P, S global biogeochemical cycles and modelling of global change. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P, and S in Biogeochemical Cycles and Global Change. NATO ASI Series, 14, Springer, Berlin pp 1–61

    Chapter  Google Scholar 

  • Middelburg JJ, Vlug T, Jaco F, Van der Nat WA (1993) Organic matter mineralization in marine systems. Glob Planet Changes 8:47–58

    Article  Google Scholar 

  • Middelburg JJ, Soetaert K, Herman PMJ (1997) Empirical relationships for use in global diagenetic models. Deep-Sea Res 44(2):327–344.

    Article  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Glob Biogeochem Cycl 7(4):927–957

    Article  Google Scholar 

  • Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geol Rdsch 85:496–504

    Article  Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam, 707 p

    Google Scholar 

  • Pedersen TF, Shimmield GB, Price NB (1992) Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin. Geochim Cosmochim Acta 56:545–551

    Article  Google Scholar 

  • Pfeifer K, Hensen C, Adler M, Wenzhöfer M, Strotmann B, Schulz HD (2000) Modeling of subsurface calcite dissolution regarding respiration and reoxidation processes in the equatorial upwelling off Gabon. Abstract, Goldschmidt Conference, Oxford, September 3rd-8th 2000

    Google Scholar 

  • Otto S (1996) Die Bedeutung von gelöstem organischen Kohlenstoff (DOC) für den Kohlenstofffluß im Ozean. Ph.D. Thesis, Berichte 87, Fachbereich Geowissenschaften, University of Bremen, 150 p

    Google Scholar 

  • Ransom B, Kim D, Kastner M, Wainwright S (1998) Organic matter preservation on continental slopes: Importance of mineralogy and surface area. Geochim Cosmochim Acta 62(8):1329–1345

    Article  Google Scholar 

  • Reimers CE, Jahnke RA, McCorkle DC (1992) Carbon fluxes and burial rates over the continental slope and rise of central California with implications for the global carbon cycle. Glob Biogeochem Cycl 6:199–224

    Article  Google Scholar 

  • Schlünz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: Reestimating flux- and burial rates. Int J Earth Sci 88:599–606

    Article  Google Scholar 

  • Schneider RR, Schulz HD, Hensen C (2000) Marine carbonates: Their formation and destruction. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer, Berlin pp 283–307

    Chapter  Google Scholar 

  • Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89

    Article  Google Scholar 

  • Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41:1629–1650

    Article  Google Scholar 

  • Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. Adv Microbial Ecol 16:41–84

    Article  Google Scholar 

  • Thomsen L (2002) The benthic boundary layer. In: Wefer et al. (eds) Ocean Margin Systems. Springer, Berlin pp 143–156

    Google Scholar 

  • Van der Weijden CH, Reichart GJ, Visser HJ (1999) Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea. Deep-Sea Res I 46:807–830

    Google Scholar 

  • Ver LM, Mackenzie FT, Lerman A (1999) Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries. Chem Geol 159: 283–304

    Article  Google Scholar 

  • Walsh JJ (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350:53–55

    Article  Google Scholar 

  • Wenzhöfer F, Adler M, Kohls O, Hensen C, Strotmann B, Boehme S, Schulz HD (in press) Calcite dissolution driven by benthic mineralisation in the deep-sea: In situ measurements of Ca2+, pH, pCO2, O2. Geochim Cosmochim Acta

    Google Scholar 

  • Zabel M, Dahmke A, Schulz HD (1998) Regional distribution of diffusive phosphate and silicate fluxes through the sediment-water interface: The eastern South Atlantic. Deep-Sea Res 45:277–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zabel, M., Hensen, C. (2002). The Importance of Mineralization Processes in Surface Sediments at Continental Margins. In: Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M., van Weering, T.C.E. (eds) Ocean Margin Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05127-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05127-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07872-9

  • Online ISBN: 978-3-662-05127-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics