# Minkowski Geometric Algebra and the Stability of Characteristic Polynomials

• Rida T. Farouki
• Hwan Pyo Moon
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

## Summary

A polynomial p is said to be Γ-stable if all its roots lie within a given domain Γ in the complex plane. The Γ-stability of an entire family of polynomials, defined by selecting the coefficients of p from specified complex sets, can be verified by (i) testing the Γ-stability of a single member, and (ii) checking that the “total value set” V * for p along the domain boundary ∂Γ does not contain 0 (V * is defined as the set of all values of p for each point on ∂Γ and every possible choice of the coefficients). The methods of Minkowski geometric algebra —the algebra of point sets in the complex plane — offer a natural language for the stability analysis of families of complex polynomials. These methods are introduced, and applied to analyzing the stability of disk polynomials with coefficients selected from circular disks in the complex plane. In this context, V * may be characterized as the union of a one-parameter family of disks, and we show that the Γ-stability of a disk polynomial can be verified by a finite algorithm (a counterpart to the Kharitonov conditions for rectangular coefficient sets) that entails checking that at most two real polynomials remain positive for all t, when the domain boundary ∂Γ is a given polynomial curve γ(t).Furthermore, the “robustness margin” can be determined by computing the real roots of a real polynomial.

## Keywords

Minkowski geometric algebra robust control stability analysis complex polynomials

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
J. Ackermann (1993), Robust Control: Systems with Uncertain Physical Parameters, Springer, London.
2. 2.
G. Alefeld and J. Herzberger (1983), Introduction to Interval Computations (translated by J. Rokne), Academic Press, New York.
3. 3.
B. R. Barmish (1994), New Tools for Robustness of Linear Systems, Macmillan, New York.
4. 4.
S. Barnett (1983), Polynomials and Linear Control Systems, Marcel Dekker, New York.
5. 5.
A. C. Bartlett, C. V. Hollot, and H. Lin (1988), Root locations of an entire polytope of polynomials: It suffices to check the edges, Mathematics of Control, Signals, and Systems 1, 61–71.
6. 6.
H. Bilharz (1944), Bemerkung zu einem Satze von Hurwitz, Zeitschrift fur Angewandte Mathematik und Mechanik 24, 77–82.
7. 7.
H. Blum and R. N. Nagel (1978), Shape description using weighted symmetric axis features, Pattern Recognition 10, 167–180.
8. 8.
V. G. Boltyanskii (1964), Envelopes, Macmillan, New York.Google Scholar
9. 9.
F. L. Bookstein (1979), The line-skeleton, Computer Graphics and Image Processing 11, 123–137.
10. 10.
N. K. Bose and K. D. Kim (1989), Stability of a complex polynomial set with coefficients in a diamond and generalizations, IEEE Transactions on Circuits and Systems 36, 1168–1174.
11. 11.
N. K. Bose and Y. Q. Shi (1987), A simple general proof of Kharitonov’s generalized stability criterion, IEEE Transactions on Circuits and Systems 34, 1233–1237.
12. 12.
J. W. Bruce and P. J. Giblin (1981), What is an envelope?, Math. Gazette 65, 186–192.
13. 13.
J. W. Bruce and P. J. Giblin (1984), Curves and Singularities, Cambridge Univ. Press.
14. 14.
H. Chapellat, S. P. Bhattacharyya, and M. Dahleh (1990), Robust stability of a family of disc polynomials, International Journal of Control 51, 1353–1362.
15. 15.
H. I. Choi, S. W. Choi, H. P. Moon, and N. S. Wee (1997), New algorithm for medial axis transform of plane domain, Graphical Models and Image Processing 59, 463–483.
16. 16.
J. J. Chou (1989), Numerical Control Milling Machine Toolpath Generation for Regions Bounded by Free Form Curves, PhD thesis, University of Utah.Google Scholar
17. 17.
R. Deaux (1956), Introduction to the Geometry of Complex Numbers (translated from the French by H. Eves), F. Ungar, New York.Google Scholar
18. 18.
R. T. Farouki and J-C. A. Chastang (1992), Curves and surfaces in geometrical optics, Mathematical Methods in Computer Aided Geometric Design II, (T. Lyche & L. L. Schumaker, eds. ), Academic Press, pp. 239–260.Google Scholar
19. 19.
R. T. Farouki, H. P. Moon, and B. Ravani (2001), Minkowski geometric algebra of complex sets, Geometriae Dedicata 85, 283–315.
20. 20.
R. T. Farouki, H. P. Moon, and B. Ravani (2000), Algorithms for Minkowski products and implicitly-defined complex sets, Advances in Computational Mathematics 13, 199–229.
21. 21.
R. T. Farouki, W. Gu, and H. P. Moon, (2000), Minkowski roots of complex sets, in Geometric Modeling and Processing 2000, IEEE Computer Society Press, Los Alamitos, CA, pp. 287–300.Google Scholar
22. 22.
R. T. Farouki and H. Pottmann, (2002), Exact Minkowski products of N complex disks, Reliable Computing 8, to appear.Google Scholar
23. 23.
R. H. Fowler (1929), The Elementary Differential Geometry of Plane Curves, Cambridge Univ. Press.
24. 24.
E. Frank (1946), On the zeros of polynomials with complex coefficients, Bulletin of the American Mathematical Society 52, 144–157 & 890–898.Google Scholar
25. 25.
F. R. Gantmacher (1960), The Theory of Matrices, Vol. 2, Chelsea, New York.Google Scholar
26. 26.
I. Gargantini and P. Henrici (1972), Circular arithmetic and the determination of polynomial zeros, Numerische Mathematik 18, 305–320.
27. 27.
P. K. Ghosh (1988), A mathematical model for shape description using Minkowski operators, Comput. Vision, Graphics, Image Process. 44, 239–269.
28. 28.
F. Gomes Teixeira (1971), Traité des Courbes Spéciales Remarquables Planes et Gauches, Tome I, Chelsea (reprint), New York.
29. 29.
H. N. Gursoy and N. M. Patrikalakis (1992), An automatic coarse and fine surface mesh generation scheme based on the medial axis transform, I: Algorithms Engineering with Computers 8, 121–137.
30. 30.
H. Hadwiger (1957), Vorlesungen liber Inhalt, Oberfläche, und Isoperimetrie, Springer, Berlin.
31. 31.
M. Held (1991), On the Computational Geometry of Pocket Machining, Springer—Verlag, Berlin.
32. 32.
A. Hurwitz (1895), On the conditions under which an equation has only roots with negative real parts, in Selected Papers on Mathematical Trends in Control Theory, Dover, New York, 1964, pp. 72–82 (translated from Mathematische Annalen 46, 273–284 ).Google Scholar
33. 33.
A. Kaul (1993), Computing Minkowski sums, PhD Thesis, Columbia University.Google Scholar
34. 34.
A. Kaul and R. T. Farouki (1995), Computing Minkowski sums of plane curves, Int. J. Comput. Geom. Applic. 5, 413–432.
35. 35.
V. L. Kharitonov (1978), Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differential’nye Uraveniya 14, 1483–1485.
36. 36.
V. L. Kharitonov (1978), On a generalization of a stability criterion, Izvestiia Akademii nauk Kazakhskoi SSR, Seria fiziko—mathematicheskaia 1, 53–57.
37. 37.
A. Kurosh (1980), Higher Algbera (translated by G. Yankovsky ), Mir Publishers, Moscow.Google Scholar
38. 38.
J. D. Lawrence (1972), A Catalog of Special Plane Curves, Dover, New York.
39. 39.
H. Lin, C. V. Hollot, and A. C. Bartlett (1987), Stability of families of polynomials: geometric considerations in the coefficient space, International Journal of Control 45, 649–660.
40. 40.
Q. Lin and J. G. Rokne (1998), Disk Bézier curves, Computer Aided Geometric Design 15, 721–737.
41. 41.
E. H. Lockwood (1967), A Book of Curves, Cambridge Univ. Press.Google Scholar
42. 42.
M. Marden (1966), Geometry of Polynomials ( 2nd edition ), American Mathematical Society, Providence, RI.
43. 43.
H. Minkowski (1903), Volumen and Oberfläche, Math. Ann. 57, 447–495.
44. 44.
R. J. Minnechelli, J. J. Anagnost, and C. A. Desoer (1989), An elementary proof of Kharitonov’s stability theorem with extensions, IEEE Transactions on Automatic Control 34, 995–998.
45. 45.
H. P. Moon (1999), Minkowski Pythagorean hodographs, Computer Aided Geometric Design 16, 739–753.
46. 46.
R. E. Moore (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ.
47. 47.
R. E. Moore (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.
48. 48.
T. Needham (1997), Visual Complex Analysis, Oxford Univ. Press.
49. 49.
H. Persson (1978), NC machining of arbitrarily shaped pockets, Computer Aided Design 10, 169–174.
50. 50.
M. S. Petkovié and L. D. Petkovié (1998), Complex Interval Arithmetic and Its Applications, Wiley VCH, Berlin.Google Scholar
51. 51.
B. T. Polyak, P. S. Scherbakov, and S. B. Shmulyian (1994), Construction of value set for robustness analysis via circular arithmetic, International Journal of Robust and Nonlinear Control 4, 371–385.
52. 52.
H. Ratschek and J. Rokne (1984), Computer Methods for the Range of Functions, Ellis Horwood, Chichester.
53. 53.
E. J. Routh (1892), Dynamics of a System of Rigid Bodies, Macmillan, New York.
54. 54.
H. Schwerdtfeger (1979), Geometry of Complex Numbers, Dover, New York.
55. 55.
J. Serra (1982), Image Analysis and Mathematical Morphology, Academic Press, London.
56. 56.
D. D. Siljak and D. M. Stipanovié (1999), Robust D-stability via positivity, Automatica 35, 1477–1484.
57. 57.
C. B. Soh, C. S. Berger, and K. P. Dabke (1985), Ori the stability properties of polynomials with perturbed coefficients, IEEE Transactions on Automatic Control 30, 1033–1036.
58. 58.
V. Srinivasan, L. R. Nackman, J. M. Tang, and S. N. Meshkat (1992), Automatic mesh generation using the symmetric axis transform of polygonal domains, IEEE Proceedings 80, 1485–1501.
59. 59.
T. K. H. Tam and C. G. Armstrong (1991), 2D finite element mesh generation by medial axis subdivision, Advances in Engineering Software 13, 313–324.
60. 60.
J. V. Uspensky (1948), Theory of Equations, McGraw-Hill, New York.Google Scholar
61. 61.
V. Vicino and M. Milanese (1990), Robust stability of linear state space models via Bernstein polynomials, in Control of Uncertain Systems ( D. Hinrichsen and B. Martensson, eds.), Birkhauser, Boston.Google Scholar
62. 62.
J. C. Willems and R. Tempo (1999), The Kharitonov theorem with degree drop, IEEE Transactions on Automatic Control 44, 2218–2220.
63. 63.
M. Zettler and J. Garloff (1989), Robustness analysis of polynomial parameter dependence using Bernstein expansion, IEEE Transactions on Automatic Control 43, 425–431.

© Springer-Verlag Berlin Heidelberg 2003

## Authors and Affiliations

• Rida T. Farouki
• 1
• Hwan Pyo Moon
• 1
1. 1.Department of Mechanical and Aeronautical EngineeringUniversity of CaliforniaDavisUSA