Advertisement

Minkowski Geometric Algebra and the Stability of Characteristic Polynomials

  • Rida T. Farouki
  • Hwan Pyo Moon
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

A polynomial p is said to be Γ-stable if all its roots lie within a given domain Γ in the complex plane. The Γ-stability of an entire family of polynomials, defined by selecting the coefficients of p from specified complex sets, can be verified by (i) testing the Γ-stability of a single member, and (ii) checking that the “total value set” V * for p along the domain boundary ∂Γ does not contain 0 (V * is defined as the set of all values of p for each point on ∂Γ and every possible choice of the coefficients). The methods of Minkowski geometric algebra —the algebra of point sets in the complex plane — offer a natural language for the stability analysis of families of complex polynomials. These methods are introduced, and applied to analyzing the stability of disk polynomials with coefficients selected from circular disks in the complex plane. In this context, V * may be characterized as the union of a one-parameter family of disks, and we show that the Γ-stability of a disk polynomial can be verified by a finite algorithm (a counterpart to the Kharitonov conditions for rectangular coefficient sets) that entails checking that at most two real polynomials remain positive for all t, when the domain boundary ∂Γ is a given polynomial curve γ(t).Furthermore, the “robustness margin” can be determined by computing the real roots of a real polynomial.

Keywords

Minkowski geometric algebra robust control stability analysis complex polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ackermann (1993), Robust Control: Systems with Uncertain Physical Parameters, Springer, London.MATHGoogle Scholar
  2. 2.
    G. Alefeld and J. Herzberger (1983), Introduction to Interval Computations (translated by J. Rokne), Academic Press, New York.MATHGoogle Scholar
  3. 3.
    B. R. Barmish (1994), New Tools for Robustness of Linear Systems, Macmillan, New York.MATHGoogle Scholar
  4. 4.
    S. Barnett (1983), Polynomials and Linear Control Systems, Marcel Dekker, New York.MATHGoogle Scholar
  5. 5.
    A. C. Bartlett, C. V. Hollot, and H. Lin (1988), Root locations of an entire polytope of polynomials: It suffices to check the edges, Mathematics of Control, Signals, and Systems 1, 61–71.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    H. Bilharz (1944), Bemerkung zu einem Satze von Hurwitz, Zeitschrift fur Angewandte Mathematik und Mechanik 24, 77–82.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    H. Blum and R. N. Nagel (1978), Shape description using weighted symmetric axis features, Pattern Recognition 10, 167–180.MATHCrossRefGoogle Scholar
  8. 8.
    V. G. Boltyanskii (1964), Envelopes, Macmillan, New York.Google Scholar
  9. 9.
    F. L. Bookstein (1979), The line-skeleton, Computer Graphics and Image Processing 11, 123–137.CrossRefGoogle Scholar
  10. 10.
    N. K. Bose and K. D. Kim (1989), Stability of a complex polynomial set with coefficients in a diamond and generalizations, IEEE Transactions on Circuits and Systems 36, 1168–1174.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    N. K. Bose and Y. Q. Shi (1987), A simple general proof of Kharitonov’s generalized stability criterion, IEEE Transactions on Circuits and Systems 34, 1233–1237.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    J. W. Bruce and P. J. Giblin (1981), What is an envelope?, Math. Gazette 65, 186–192.MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. W. Bruce and P. J. Giblin (1984), Curves and Singularities, Cambridge Univ. Press.MATHGoogle Scholar
  14. 14.
    H. Chapellat, S. P. Bhattacharyya, and M. Dahleh (1990), Robust stability of a family of disc polynomials, International Journal of Control 51, 1353–1362.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    H. I. Choi, S. W. Choi, H. P. Moon, and N. S. Wee (1997), New algorithm for medial axis transform of plane domain, Graphical Models and Image Processing 59, 463–483.CrossRefGoogle Scholar
  16. 16.
    J. J. Chou (1989), Numerical Control Milling Machine Toolpath Generation for Regions Bounded by Free Form Curves, PhD thesis, University of Utah.Google Scholar
  17. 17.
    R. Deaux (1956), Introduction to the Geometry of Complex Numbers (translated from the French by H. Eves), F. Ungar, New York.Google Scholar
  18. 18.
    R. T. Farouki and J-C. A. Chastang (1992), Curves and surfaces in geometrical optics, Mathematical Methods in Computer Aided Geometric Design II, (T. Lyche & L. L. Schumaker, eds. ), Academic Press, pp. 239–260.Google Scholar
  19. 19.
    R. T. Farouki, H. P. Moon, and B. Ravani (2001), Minkowski geometric algebra of complex sets, Geometriae Dedicata 85, 283–315.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    R. T. Farouki, H. P. Moon, and B. Ravani (2000), Algorithms for Minkowski products and implicitly-defined complex sets, Advances in Computational Mathematics 13, 199–229.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    R. T. Farouki, W. Gu, and H. P. Moon, (2000), Minkowski roots of complex sets, in Geometric Modeling and Processing 2000, IEEE Computer Society Press, Los Alamitos, CA, pp. 287–300.Google Scholar
  22. 22.
    R. T. Farouki and H. Pottmann, (2002), Exact Minkowski products of N complex disks, Reliable Computing 8, to appear.Google Scholar
  23. 23.
    R. H. Fowler (1929), The Elementary Differential Geometry of Plane Curves, Cambridge Univ. Press.MATHGoogle Scholar
  24. 24.
    E. Frank (1946), On the zeros of polynomials with complex coefficients, Bulletin of the American Mathematical Society 52, 144–157 & 890–898.Google Scholar
  25. 25.
    F. R. Gantmacher (1960), The Theory of Matrices, Vol. 2, Chelsea, New York.Google Scholar
  26. 26.
    I. Gargantini and P. Henrici (1972), Circular arithmetic and the determination of polynomial zeros, Numerische Mathematik 18, 305–320.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    P. K. Ghosh (1988), A mathematical model for shape description using Minkowski operators, Comput. Vision, Graphics, Image Process. 44, 239–269.CrossRefGoogle Scholar
  28. 28.
    F. Gomes Teixeira (1971), Traité des Courbes Spéciales Remarquables Planes et Gauches, Tome I, Chelsea (reprint), New York.MATHGoogle Scholar
  29. 29.
    H. N. Gursoy and N. M. Patrikalakis (1992), An automatic coarse and fine surface mesh generation scheme based on the medial axis transform, I: Algorithms Engineering with Computers 8, 121–137.CrossRefGoogle Scholar
  30. 30.
    H. Hadwiger (1957), Vorlesungen liber Inhalt, Oberfläche, und Isoperimetrie, Springer, Berlin.CrossRefGoogle Scholar
  31. 31.
    M. Held (1991), On the Computational Geometry of Pocket Machining, Springer—Verlag, Berlin.MATHCrossRefGoogle Scholar
  32. 32.
    A. Hurwitz (1895), On the conditions under which an equation has only roots with negative real parts, in Selected Papers on Mathematical Trends in Control Theory, Dover, New York, 1964, pp. 72–82 (translated from Mathematische Annalen 46, 273–284 ).Google Scholar
  33. 33.
    A. Kaul (1993), Computing Minkowski sums, PhD Thesis, Columbia University.Google Scholar
  34. 34.
    A. Kaul and R. T. Farouki (1995), Computing Minkowski sums of plane curves, Int. J. Comput. Geom. Applic. 5, 413–432.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    V. L. Kharitonov (1978), Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differential’nye Uraveniya 14, 1483–1485.MathSciNetGoogle Scholar
  36. 36.
    V. L. Kharitonov (1978), On a generalization of a stability criterion, Izvestiia Akademii nauk Kazakhskoi SSR, Seria fiziko—mathematicheskaia 1, 53–57.MathSciNetGoogle Scholar
  37. 37.
    A. Kurosh (1980), Higher Algbera (translated by G. Yankovsky ), Mir Publishers, Moscow.Google Scholar
  38. 38.
    J. D. Lawrence (1972), A Catalog of Special Plane Curves, Dover, New York.MATHGoogle Scholar
  39. 39.
    H. Lin, C. V. Hollot, and A. C. Bartlett (1987), Stability of families of polynomials: geometric considerations in the coefficient space, International Journal of Control 45, 649–660.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Q. Lin and J. G. Rokne (1998), Disk Bézier curves, Computer Aided Geometric Design 15, 721–737.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    E. H. Lockwood (1967), A Book of Curves, Cambridge Univ. Press.Google Scholar
  42. 42.
    M. Marden (1966), Geometry of Polynomials ( 2nd edition ), American Mathematical Society, Providence, RI.MATHGoogle Scholar
  43. 43.
    H. Minkowski (1903), Volumen and Oberfläche, Math. Ann. 57, 447–495.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    R. J. Minnechelli, J. J. Anagnost, and C. A. Desoer (1989), An elementary proof of Kharitonov’s stability theorem with extensions, IEEE Transactions on Automatic Control 34, 995–998.CrossRefGoogle Scholar
  45. 45.
    H. P. Moon (1999), Minkowski Pythagorean hodographs, Computer Aided Geometric Design 16, 739–753.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    R. E. Moore (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ.MATHGoogle Scholar
  47. 47.
    R. E. Moore (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.MATHCrossRefGoogle Scholar
  48. 48.
    T. Needham (1997), Visual Complex Analysis, Oxford Univ. Press.MATHGoogle Scholar
  49. 49.
    H. Persson (1978), NC machining of arbitrarily shaped pockets, Computer Aided Design 10, 169–174.CrossRefGoogle Scholar
  50. 50.
    M. S. Petkovié and L. D. Petkovié (1998), Complex Interval Arithmetic and Its Applications, Wiley VCH, Berlin.Google Scholar
  51. 51.
    B. T. Polyak, P. S. Scherbakov, and S. B. Shmulyian (1994), Construction of value set for robustness analysis via circular arithmetic, International Journal of Robust and Nonlinear Control 4, 371–385.MathSciNetGoogle Scholar
  52. 52.
    H. Ratschek and J. Rokne (1984), Computer Methods for the Range of Functions, Ellis Horwood, Chichester.MATHGoogle Scholar
  53. 53.
    E. J. Routh (1892), Dynamics of a System of Rigid Bodies, Macmillan, New York.MATHGoogle Scholar
  54. 54.
    H. Schwerdtfeger (1979), Geometry of Complex Numbers, Dover, New York.MATHGoogle Scholar
  55. 55.
    J. Serra (1982), Image Analysis and Mathematical Morphology, Academic Press, London.MATHGoogle Scholar
  56. 56.
    D. D. Siljak and D. M. Stipanovié (1999), Robust D-stability via positivity, Automatica 35, 1477–1484.MATHCrossRefGoogle Scholar
  57. 57.
    C. B. Soh, C. S. Berger, and K. P. Dabke (1985), Ori the stability properties of polynomials with perturbed coefficients, IEEE Transactions on Automatic Control 30, 1033–1036.MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    V. Srinivasan, L. R. Nackman, J. M. Tang, and S. N. Meshkat (1992), Automatic mesh generation using the symmetric axis transform of polygonal domains, IEEE Proceedings 80, 1485–1501.CrossRefGoogle Scholar
  59. 59.
    T. K. H. Tam and C. G. Armstrong (1991), 2D finite element mesh generation by medial axis subdivision, Advances in Engineering Software 13, 313–324.MATHGoogle Scholar
  60. 60.
    J. V. Uspensky (1948), Theory of Equations, McGraw-Hill, New York.Google Scholar
  61. 61.
    V. Vicino and M. Milanese (1990), Robust stability of linear state space models via Bernstein polynomials, in Control of Uncertain Systems ( D. Hinrichsen and B. Martensson, eds.), Birkhauser, Boston.Google Scholar
  62. 62.
    J. C. Willems and R. Tempo (1999), The Kharitonov theorem with degree drop, IEEE Transactions on Automatic Control 44, 2218–2220.MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    M. Zettler and J. Garloff (1989), Robustness analysis of polynomial parameter dependence using Bernstein expansion, IEEE Transactions on Automatic Control 43, 425–431.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rida T. Farouki
    • 1
  • Hwan Pyo Moon
    • 1
  1. 1.Department of Mechanical and Aeronautical EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations