3D Loop Detection and Visualization in Vector Fields

  • Thomas Wischgoll
  • Gerik Scheuermann
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Visualization has developed a tendency to use mathematical analysis to obtain and present important data properties. In three-dimensional fluid flows, engineers are interested in several important features. One type are recirculation zones where the fluid stays for a long time. This plays a key role in combustion problems since recirculation allows a completion of chemical reactions which usually have a smaller time scale than fluid dynamics. Strong indicators for such recirculation zones are looping streamlines in a steady vector field or in the time steps of unsteady data. The article presents a method for the detection of such loops by analyzing streamlines approaching them.


Cell Cycle Vector Field Recirculation Zone Integral Curve Integral Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bürkle, M. Dellnitz, O. Junge, M. Rumpf, and M. Spielberg. Visualizing complicated dynamics. In A. Varshney, C. M. Wittenbrink, and H. Hagen, editors, IEEE Visualization ‘89 Late Breaking Hot Topics, pp. 33 — 36, San Francisco, 1999.Google Scholar
  2. 2.
    M. Dellnitz and O. Junge. On the Approximation of Complicated Dynamical Behavior. SIAM Journal on Numerical Analysis, 36(2), pp. 491 515, 1999.MathSciNetGoogle Scholar
  3. 3.
    A. Globus, C. Levit, and T. Lasinski. A Tool for Visualizing the Topology of Three-Dimensional Vector Fields. In G. M. Nielson and L. Rosenblum, editors, IEEE Visualization `91, pp. 33 — 40, San Diego, 1991.Google Scholar
  4. 4.
    J. Guckenheimer and P. Holmes. Dynamical Systems and Bifurcation of Vector Fields. Springer, New York, 1983.Google Scholar
  5. 5.
    R. Haimes. Using residence time for the extraction of recirculation regions. AIAA Paper 99–3291, 1999.Google Scholar
  6. 6.
    J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and Applications, 11 (3), pp. 36–46, May 1991.CrossRefGoogle Scholar
  7. 7.
    D. H. Hepting, G. Derks, D. Edoh, and R. R. D. Qualitative analysis of invariant tori in a dynamical system. In G. M. Nielson and D. Silver, editors, IEEE Visualization ‘85, pp. 342–345, Atlanta, GA, 1995.Google Scholar
  8. 8.
    M. W. Hirsch and S. Surale. Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York, 1974.MATHGoogle Scholar
  9. 9.
    J. P. M. Hultquist. Constructing stream surface in steady 3d vector fields. In Proceedings IEEE Visualization 1992, pp. 171–177. IEEE Computer Society Press, Los Alamitos CA, 1992.Google Scholar
  10. 10.
    M. Jean. Sur la méthode des sections pour la recherche de certaines solutions presque périodiques de syst`emes forces periodiquement. International Journal on Non-Linear Mechanics$115, pp. 367–376, 1980.Google Scholar
  11. 11.
    D. N. Kenwright. Automatic Detection of Open and Closed Separation and Attachment Lines. In D. Ebert, H. Rushmeier, and H. Hagen, editors, IEEE Visualization ‘88, pp. 151–158, Research Triangle Park, NC, 1998.Google Scholar
  12. 12.
    S. Lang. Differential and Riemannian Manifolds. Springer, New York, third edition, 1995.MATHCrossRefGoogle Scholar
  13. 13.
    K. Museth, A. Barr, and M. W. Lo. Semi-immersive space mission design and visualization: Case study of the “terrestrial planet finder” mission. In Proceedings IEEE Visualization 2001, pp. 501 504. IEEE Computer Society Press, Los Alamitos CA, 2001.Google Scholar
  14. 14.
    G. M. Nielson, H. Hagen, and H. Müller, editors. Scientific Visualization, Overviews, Methodologies, and Techniques. IEEE Computer Society, Los Alamitos, CA, USA, 1997.Google Scholar
  15. 15.
    G. Scheuermann, B. Hamann, K. I. Joy, and W. Kollmann. Visualizing local Vetor Field Topology. Journal of Electronic Imaging, 9 (4), 2000.Google Scholar
  16. 16.
    J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer, Berlin, 3 edition, 1990.Google Scholar
  17. 17.
    M. van Veldhuizen. A New Algorithm for the Numerical Approximation of an Invariant Curve. SIAM Journal on Scientific and Statistical Computing 8(6), pp. 951–962, 1987.Google Scholar
  18. 18.
    R. Wegenkittel, H. Löffelmann, and E. Gröller. Visualizing the Behavior of Higher Dimensional Dynamical Systems. In R. Yagel and H. Hagen, editors, IEEE Visualization ‘87, pp. 119–125, Phoenix, AZ, 1997.Google Scholar
  19. 19.
    T. Wischgoll and G. Scheuermann. Detection and Visualization of Closed Streamlines in Planar Flows. IEEE Transactions on Visualization and Computer Graphics, 7 (2), 2001.Google Scholar
  20. 20.
    P. C. Wong, H. Foote, R. Leung, E. Jurrus, D. Adams, and J. Thomas. Vector fields simplification–a case study of visualizing climate modeling and simulation data sets. In Proceedings IEEE Visualization 2000, pp. 485–488. IEEE Computer Society Press, Los Alamitos CA, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Thomas Wischgoll
    • 1
  • Gerik Scheuermann
    • 1
  1. 1.Computer Science DepartmentUniversity of KaiserslauternGermany

Personalised recommendations