Skip to main content

Identifying Vector Field Singularities Using a Discrete Hodge Decomposition

  • Conference paper
Visualization and Mathematics III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

We derive a Hodge decomposition of discrete vector fields on polyhedral surfaces, and apply it to the identification of vector field singularities. This novel approach allows us to easily detect and analyze singularities as critical points of corresponding potentials. Our method uses a global variational approach to independently compute two potentials whose gradient respectively co-gradient are rotation-free respectively divergence-free components of the vector field. The sinks and sources respectively vortices are then automatically identified as the critical points of the corresponding scalar-valued potentials. The global nature of the decomposition avoids the approximation problem of the Jacobian and higher order tensors used in local methods, while the two potentials plus a harmonic flow component are an exact decomposition of the vector field containing all information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Banks and B. Singer. A predictor-corrector technique for visualizing unsteady flow. IEEE Transactions on Visualization and Computer Graphics, 1 (2): 151–163, June 1995.

    Article  Google Scholar 

  2. A. Bossavit. Mixed finite elements and the complex of whitney forms. In

    Google Scholar 

  3. J. Whiteman, editor, The Mathematics of Finite Elements and Applications VI, pages 137–144. Academic Press, 1988.

    Google Scholar 

  4. A. Bossavit. Computational Electromagnetism. Academic Press, Boston, 1998.

    MATH  Google Scholar 

  5. S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer Verlag, 1994.

    Google Scholar 

  6. A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer Verlag, 1998.

    Google Scholar 

  7. P. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.

    Google Scholar 

  8. J. Dodziuk. Finite-difference approach to the hodge theory of harmonic forms. Amer. J. of Math., 98 (1): 79–104, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Eckmann. Harmonische Funktionen und Randwertaufgaben in einem Kornplex. Commentarii Math. Helvetici 17:240–245, 1944–45.

    Google Scholar 

  10. J. Heiman and L. Hesselink. Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8): 27 36, August 1989.

    Google Scholar 

  11. J. Heiman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE Computer Graphics 6 Applications, 11 (3): 36–46, 1991.

    Article  Google Scholar 

  12. H. Helmholtz. Über Integrale der Hydrodynamischen Gleichungen. J. Reine Angew. Math., 55: 25–55, 1858.

    Article  MATH  Google Scholar 

  13. D. Kenwright and R. Haimes. Vortex identification–applications in aerodynamics: A case study. In R. Yagel and H. Hagen, editors, Proc. Visualization ‘87, pages 413–416, 1997.

    Google Scholar 

  14. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experim. Math., 2 (1): 15–36, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Polthier. Computational aspects and discrete minimal surfaces. In D. H. et al., editor, Proceedings of the 2001 Clay Mathematics Institute Summer School on the Global Theory of Minimal Surfaces. AMS, 2002.

    Google Scholar 

  16. K. Polthier, S. Khadem-Al-Charieh, E. Preuß, and U. Reitebuch. JavaView Homepage, 1998–2002. http: //www. javaview.de/.

    Google Scholar 

  17. K. Polthier, S. Khadem-Al-Charieh, E. Preuß, and U. Reitebuch. Publication of interactive visualizations with JavaView. In J. Borwein, M. H. Morales, K. Polthier, and J. F. Rodrigues, editors, Multimedia Tools for Communicating Mathematics pages 241–264. Springer Verlag, 2002. http://www. javaview.de.

    Google Scholar 

  18. K. Polthier and E. Preuß. Variational approach to vector field decomposition. In R. van Liere, F. Post, and et.al., editors, Proc. of Eurographics Workshop on Scientific Visualization. Springer Verlag, 2000.

    Google Scholar 

  19. M. Roth and R. Peikert. A higher-order method for finding vortex core lines. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. Visualization ‘88, pages 143 — 150. IEEE Computer Society Press, 1998.

    Google Scholar 

  20. I. A. Sadarjoen and F. H. Post. Geometric methods for vortex extraction. In E. Gröller, H. Löffelmann, and W. Ribarsky, editors Data Visualization ‘89, pages 53 62. Springer Verlag, 1999.

    Google Scholar 

  21. I. A. Sadarjoen, F. H. Post, B. Ma, D. Banks, and H. Pagendarrn. Selective visualization of vortices in hydrodynamic flows. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. Visualization ‘88, pages 419 — 423. IEEE Computer Society Press, 1998.

    Google Scholar 

  22. G. Scheuermann, H. Hagen, and H. Krüger. Clifford algebra in vector field visualization. In H.-C. Hege and K. Polthier, editors, Mathematical Visualization, pages 343–351. Springer-Verlag, Heidelberg, 1998.

    Chapter  Google Scholar 

  23. D. Sujudi and R. Haimes. Identification of swirling flow in 3-d vector fields. Technical report, AIAA Paper 95–1715, 1995.

    Google Scholar 

  24. M. Tittgemeyer, G. Wollny, and F. Kruggel. Visualising deformation fields computed by non-linear image registration. Computing and Visualization in Science, 2002. to appear.

    Google Scholar 

  25. R. Westermann, C. Johnson. and T. Ertl. Topology preserving smoothing of vector fields. Transactions on Visualization and Computer Graphics, pages 222–229, 2001.

    Google Scholar 

  26. H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.

    Google Scholar 

  27. T. Wischgoll and G. Scheuermann. Detection and visualization of closed streamlines in planar flows. Transactions on Visualization and Computer Graphics, 7(2): 165 172, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Polthier, K., Preuß, E. (2003). Identifying Vector Field Singularities Using a Discrete Hodge Decomposition. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics III. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05105-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05105-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05682-6

  • Online ISBN: 978-3-662-05105-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics