Driving Robots

  • Thomas Bräunl


Using two DC motors and two wheels is the easiest way to build a mobile robot. In this chapter we will discuss several designs such as differential drive, synchro-drive, and Ackermann steering. The omnidirectional robot designs are dealt with in Chapter 11.


Mobile Robot Front Wheel Dead Reckoning Global Sensor Drive Wheel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbib, M., House, D.Depth and Detours: An Essay on Visually Guided Behavior, in M. Arbib, A. Hanson (Eds.), Vision, Brain and Cooperative Computation, MIT Press, Cambridge MA, 1987, pp. 129–163 (35)Google Scholar
  2. Arkin, R.Behavior-Based Robotics, MIT Press, Cambridge MA, 1998Google Scholar
  3. Asada, M., RoboCup-98: Robot Soccer World Cup II, Proceedings of the Second RoboCup Workshop, Paris, 1998Google Scholar
  4. Borenstein, J., Everett, H., Feng, L.Navigating Mobile Robots: Sensors and Techniques, AK Peters, Wellesley MA, 1998Google Scholar
  5. Brooks, R.A Robust Layered Control System For A Mobile Robot, IEEE Journal of Robotics and Automation, vol. 2, no.1, 1986, pp. 14–23 (7)MathSciNetCrossRefGoogle Scholar
  6. Cho, H., Lee, J.-J. (Eds.) Proceedings of the 2002 FIRA World Congress, Seoul, Korea, May 2002Google Scholar
  7. Craig, J.Introduction to RoboticsMechanics and Control, 2nd Ed., Addison-Wesley, Reading MA, 1989MATHGoogle Scholar
  8. Dijkstra, E.A note on two problems in connexion with graphs, Numerische Mathematik, Springer-Verlag, Heidelberg, vol. 1, pp. 269–271 (3), 1959Google Scholar
  9. Hart, P., Nilsson, N., Raphael, B.A Formal Basis for the Heuristic Determination of Minimum Cost Paths, IEEE Transactions on Systems Science and Cybernetics, vol. SSC-4, no. 2, 1968, pp. 100–107 (8)CrossRefGoogle Scholar
  10. Joker Robotics,, 2003
  11. Jones, J., Flynn, A., Seiger, B.Mobile Robots — From Inspiration to Implementation, 2nd Ed., AK Peters, Wellesley MA, 1999Google Scholar
  12. Kamon, I., Rivlin, E.Sensory-Based Motion Planning with Global Proofs, IEEE Transactions on Robotics and Automation, vol. 13, no. 6, Dec. 1997, pp. 814–822(9)Google Scholar
  13. Kasper, M.Fricke, G.Von Puttkamer, E.A Behavior-Based Architecture for Teaching More than Reactive Behaviors to Mobile Robots, 3rd European Workshop on Advanced Mobile Robots, EUROBOT ’99, Zürich, Switzerland, September 1999, IEEE Press, pp. 203–210 (8)Google Scholar
  14. Koren, Y., Borenstein, J.Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation, Proceedings of the IEEE Conference on Robotics and Automation, Sacramento CA, April 1991, pp. 1398–1404(7)Google Scholar
  15. Mckerrow, P., Introduction to Robotics, Addison-Wesley, Reading MA, 1991Google Scholar
  16. Peters, F., Kasper, M., Essling, M., von Puttkamer, E.Flächendeckendes Explorieren und Navigieren in a priori unbekannter Umgebung mit low-cost Robotern, 16. Fachgespräch Autonome Mobile Systeme AMS 2000, Karlsruhe, Germany, Nov. 2000Google Scholar
  17. Puttkamer, E.Von.Autonome Mobile Roboter, Lecture notes, Univ. Kaiserslautern, Fachbereich Informatik, 2000Google Scholar
  18. Rückert, U., Sitte, J., Witkowski, U.Autonomous Minirobots for Research and Edutainment — AMiRE2001, Proceedings of the 5th International Heinz Nixdorf Symposium, HNI-Verlagsschriftenreihe, no. 97, Univ. Paderborn, Oct. 2001Univ.Kaiserslautern,, 2003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Thomas Bräunl
    • 1
  1. 1.School of Electrical, Electronic and Computer EngineeringThe University of Western AustraliaCrawley, PerthAustralia

Personalised recommendations