Advertisement

Coronary Flow Reserve

  • Eugenio Picano
  • Fausto Rigo
  • Jorge Lowenstein

Abstract

The concept of coronary flow reserve was proposed experimentally by Lance K. Gould in 1974 [1]. Under normal conditions, in the absence of stenosis, coronary blood flow can increase approximately four- to-sixfold to meet increasing myocardial oxygen demands. This effect is mediated by vasodilation at the arteriolar bed, which reduces vascular resistance, thereby augmenting flow. Coronary reserve is the capacity of the coronary circulation to dilate following an increase in myocardial metabolic demand and can be expressed by the difference between the hyperemic flow and the resting flow curve. In most clinical applications, hyperemia is induced pharmacologically, not via an increase in oxygen demand. A combined anatomical and physiological classification can ideally identify four separate segments in the hyperemic curve (Fig. 2 of Chap. 2):
  1. 1.

    The hemodynamically silent range of o%–40% stenosis, which does not affect coronary flow reserve (>2.5) to any detectable extent.

     
  2. 2.

    The clinically silent zone, where stenosis ranging from 40% to 70% may marginally reduce the coronary flow reserve without reaching the critical threshold required to provoke ischemia with the usual stresses.

     
  3. 3.

    The severe stenosis range (70%–90%), where critical stenosis reduces coronary flow reserve less than 2.0 and myocardial ischemia is usually elicited when a stress is applied.

     
  4. 4.

    The very severe stenosis range (>90%), producing a marked transstenotic pressure drop at rest, with a reduction of baseline myocardial blood flow and a coronary flow reserve close to 1, or even less: in these patients, the administration of a coronary vasodilator actually decreases the poststenotic flow for steal phenomena.

     

Keywords

Coronary Flow Coronary Flow Reserve Internal Mammary Artery Saphenous Vein Graft Myocardial Contrast Echocardiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gould KL, Lipscomb K (1974) Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol 34:48–55PubMedCrossRefGoogle Scholar
  2. 2.
    Uren NG, Melin JA, De Bruyne B, et al (1994) Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 330:1782–1788PubMedCrossRefGoogle Scholar
  3. 3.
    White CW, Wright CB, Doty DB, et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824PubMedCrossRefGoogle Scholar
  4. 4.
    Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342PubMedCrossRefGoogle Scholar
  5. 5.
    Varga A, Picano E, Cortigiani L, et al (1996) Does stress echocardiography predict the site of future myocardial infarction? A large-scale multicenter study. J Am Coll Cardiol 28:45–51PubMedCrossRefGoogle Scholar
  6. 6.
    Strauer BE (1990) The significance of coronary reserve in clinical heart disease. J Am Coll Cardiol 15:775–783PubMedCrossRefGoogle Scholar
  7. 7.
    Gould KL (1991) Comparison of PET and other imaging techniques. In: Gould KL (ed) Coronary artery stenosis. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Saraste M, Koskenvuo J, Knuuti J, et al (2001) Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol 21:114–122PubMedCrossRefGoogle Scholar
  9. 9.
    Ono S, Nohara R, Kambara H, Okuda K, Kawai C (1992) Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation. 85:1125–1131PubMedCrossRefGoogle Scholar
  10. 10.
    Iliceto S, Marangelli V, Memmola C, et al (1991) Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamole-induced coronary vasodilation. Circulation 83:61–69PubMedCrossRefGoogle Scholar
  11. 11.
    Hutchinson SJ, Shen A, Soldo S, et al (1996) Transesophageal assessment of coronary flow velocity reserve during “regular” and “high”-dose dipyridamole stress testing. Am J Cardiol 77:1164–1168PubMedCrossRefGoogle Scholar
  12. 12.
    Hozumi T, Yoshida K, Ogata Y, et al (1998) Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation 97:1557–1562PubMedCrossRefGoogle Scholar
  13. 13.
    Caiati C, Montaldo C, Zedda N, et al (1999) New noninvasive method for coronary flow reserve assessment: contrast-enhanced transthoracic second harmonic echo Doppler. Circulation 99:771–778PubMedCrossRefGoogle Scholar
  14. 14.
    Lim HE, Shim WJ, Rhee H, et al (2000) Assessment of coronary flow reserve with transthoracic Doppler echocardiography: comparison among adenosine, standard-dose dipyridamole, and high-dose dipyridamole. J Am Soc Echocardiogr 13:264–270PubMedCrossRefGoogle Scholar
  15. 15.
    Daimon M, Watanabe H, Yamagishi H, et al (2001) Physiologic assessment of coronary artery stenosis by coronary flow reserve measurements with transthoracic Doppler echocardiography: comparison with exercise thallium-201 single photon emission computed tomography. J Am Coll Cardiol 37:1310–1315PubMedCrossRefGoogle Scholar
  16. 16.
    Caiati C, Zedda N, Montaldo C, et al (1999) Contrast-enhanced transthoracic second harmonic echo Doppler with adenosine: a noninvasive, rapid and effective method for coronary flow reserve assessment. J Am Coll Cardiol 34:122–130PubMedCrossRefGoogle Scholar
  17. 17.
    Pizzuto F, Voci P, Mariano E, et al (2001) Assessment of flow velocity reserve by transthoracic Doppler echocardiography and venous adenosine infusion before and after left anterior descending coronary artery stenting. J Am Coll Cardiol 38:155–162PubMedCrossRefGoogle Scholar
  18. 18.
    Badger RS, Brown BG, Josephson MA, et al (1986) Hyperemic myocardial perfusion imaging for noninvasive detection of coronary disease in man: comparison of treadmill exercise and intravenous dipyridamole infusion. Can J Cardiol Suppl A:186A–194AGoogle Scholar
  19. 19.
    Kawano H, Fujii H, Motoyama T, et al (2000) Myocardial ischemia due to coronary artery spasm during dobutamine stress echocardiography. Am J Cardiol 85:26–30PubMedCrossRefGoogle Scholar
  20. 20.
    Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111PubMedCrossRefGoogle Scholar
  21. 21.
    Picano E (1992) Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation 85:1604–1612PubMedCrossRefGoogle Scholar
  22. 22.
    Martin TW, Seaworth JF, Johns JP, et al (1992) Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann Intern Med 116:190–196PubMedGoogle Scholar
  23. 23.
    Rossen JD, Quillen JE, Lopez AG, et al (1990) Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J Am Coll Cardiol 15:373–377CrossRefGoogle Scholar
  24. 24.
    Rigo F, Richieri M, Pasanisi E, et al (2003) Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol 91:269–73PubMedCrossRefGoogle Scholar
  25. 25.
    Nohtomi Y, Takeuchi M, Nagasawa K, et al (2003) Simultaneous assessment of wall motion and coronary flow velocity in the left anterior descending coronary artery during dipyridamole stress echocardiography. J Am Soc Echo, 17:457–463CrossRefGoogle Scholar
  26. 26.
    Lowenstein J, Tiano C, Marquez G, et al (2003) Simultaneous analysis of wall motion and coronary flow reserve of the left anterior descending coronary artery by transthoracic Doppler echocardiography during dipyridamole stress. J Am Soc Echo, 17:735–744Google Scholar
  27. 27.
    Picano E, Palinkas A, Amyot R (2001) Diagnosis of myocardial ischemia in hypertensive patients. J Hypertens 19:1–7CrossRefGoogle Scholar
  28. 28.
    Lattanzi F, Picano E, Bolognese L, et al (1991) Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Correlation with exercise electrocardiography. Circulation 83:1256–1262PubMedCrossRefGoogle Scholar
  29. 29.
    Billinger M, Seiler C, Fleisch M, et al (2001) Do beta-adrenergic blocking agents increase coronary flow reserve? J Am Coll Cardiol 38:1866–1871PubMedCrossRefGoogle Scholar
  30. 30.
    Voci P, Pizzuto F, Mariano E et al (2002) Measurement of coronary flow reserve in the anterior and posterior descending coronary arteries by transthoracic Doppler ultrasound. Am J Cardiol 90:988–91PubMedCrossRefGoogle Scholar
  31. 31.
    Ueno Y, Nakamura Y, Takashima H et al (2002) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardiogr 15:1074–9PubMedCrossRefGoogle Scholar
  32. 32.
    Neglia D, Michelassi C, Trivieri MG, et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193PubMedCrossRefGoogle Scholar
  33. 33.
    Schächinger V, Britten M, Zeiher A (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906PubMedCrossRefGoogle Scholar
  34. 34.
    Albertal M, Voskuil M, Piek JJ, et al; The Doppler Endpoints Balloon Angioplasty Trial Europe (DEBATE) II Study Group (2002) Coronary flow velocity reserve after percutaneous interventions is predictive of periprocedural outcome. Circulation 105:1573–1578PubMedCrossRefGoogle Scholar
  35. 35.
    Chandraratna PA, Tak T, Ismail Y, et al (1997) Visualization and measurement of flow velocity and flow reserve in aortocoronary saphenous vein bypass grafts by transesophageal echocardiography. Am J Cardiol 80:955–958PubMedCrossRefGoogle Scholar
  36. 36.
    De Bono DP, Samani NJ, Spyt TJ, et al (1992) Transcutaneous ultrasound measurements of blood flow in internal mammary artery to coronary artery graft. Lancet 339:379–381PubMedCrossRefGoogle Scholar
  37. 37.
    Fusejima K, Takahara Y, Sudo Y, et al (1990) Comparison of coronary hemodynamics in patients with internal mammary artery and saphenous vein coronary artery bypass grafts: a noninvasive approach using combined two-dimensional and Doppler echocardiography. J Am Coll Cardiol 15:131–139PubMedCrossRefGoogle Scholar
  38. 38.
    Takagi T, Yoshikawa J, Yoshida K, et al (1993) Noninvasive assessment of left internal mammary artery graft patency using duplex Doppler echocardiography from supraclavicular fossa. J Am Coll Cardiol 22:1647–1652PubMedCrossRefGoogle Scholar
  39. 39.
    Ehrsam JE, Spittell PC, Seward JB (1998) Internal mammary artery: 100% visualization with new ultrasound technology. J Am Soc Echocardiogr 11:10–12PubMedCrossRefGoogle Scholar
  40. 40.
    Mauric A, De Bono DP, Samani NJ, et al (1994) Transcutaneous ultrasound assessment of internal thoracic artery to coronary artery grafts in patients with and without ischemic symptoms. Br Heart J 72:476–481PubMedCrossRefGoogle Scholar
  41. 41.
    Crowley JJ, Shapiro LM (1995) Noninvasive assessment of left internal mammary artery graft patency using transthoracic echocardiography. Circulation 92:1125–1130CrossRefGoogle Scholar
  42. 42.
    Pezzano A, Fusco R, Child M, et al (1997) Assessment of left internal mammary artery grafts using dipyridamole Doppler echocardiography. Am J Cardiol 80:1603–1606PubMedCrossRefGoogle Scholar
  43. 43.
    Katz WE, Zenati M, Mandarino WA, et al (1999) Assessment of left internal mammary artery graft patency and flow reserve after minimally invasive direct coronary artery bypass. Am J Cardiol 84:795–801PubMedCrossRefGoogle Scholar
  44. 44.
    Fukata Y, Horike K, Fujimoto E, et al (1999) Evaluation of the internal thoracic arterial graft patency by the transthoracic Doppler method under continuous intravenous infusion of adenosine triphosphate disodium. Ann Thorac Cardiovasc Surg 5:310–320PubMedGoogle Scholar
  45. 45.
    Voudris V, Athanassopoulos G, Vassilikos V, et al (1999) Usefulness of flow reserve in the left internal mammary artery to determine graft patency to the left anterior descending coronary artery. Am J Cardiol 83:1157–1163PubMedCrossRefGoogle Scholar
  46. 46.
    De Simone L, Caso P, Severino S, et al (1999) Noninvasive assessment of left and right internal mammary artery graft patency with high-frequency transthoracic echocardiography. J Am Soc Echocardiogr 12:841–849PubMedCrossRefGoogle Scholar
  47. 47.
    Tavilla G, Pijls NH, Berreklouw E, et al (1999) Noninvasive assessment of right gastroepiploic artery graft patency using transcutaneous color Doppler echocardiography. Ann Thorac Surg 67:624–628PubMedCrossRefGoogle Scholar
  48. 48.
    Chirillo F, Bruni A, Balestra G, et al (2001) Assessment of internal mammary artery and saphenous vein graft patency and flow reserve using transthoracic Doppler echocardiography. Heart 86:424–431PubMedCrossRefGoogle Scholar
  49. 49.
    Galderisi M, Cicala S, Caso P et al (2002) Coronary flow reserve and myocardial diastolic dysfunction in arterial hypertension. Am J Cardiol 90:860–4PubMedCrossRefGoogle Scholar
  50. 50.
    Dimitrow PP (2003) Transthoracic Doppler echocardiography. Noninvasive diagnostic window for coronary flow reserve assessment. Cardiovascular Ultrasound 1:4PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Eugenio Picano
  • Fausto Rigo
  • Jorge Lowenstein

There are no affiliations available

Personalised recommendations