Skip to main content

Coronary Flow Reserve

  • Chapter
  • 88 Accesses

Abstract

The concept of coronary flow reserve was proposed experimentally by Lance K. Gould in 1974 [1]. Under normal conditions, in the absence of stenosis, coronary blood flow can increase approximately four- to-sixfold to meet increasing myocardial oxygen demands. This effect is mediated by vasodilation at the arteriolar bed, which reduces vascular resistance, thereby augmenting flow. Coronary reserve is the capacity of the coronary circulation to dilate following an increase in myocardial metabolic demand and can be expressed by the difference between the hyperemic flow and the resting flow curve. In most clinical applications, hyperemia is induced pharmacologically, not via an increase in oxygen demand. A combined anatomical and physiological classification can ideally identify four separate segments in the hyperemic curve (Fig. 2 of Chap. 2):

  1. 1.

    The hemodynamically silent range of o%–40% stenosis, which does not affect coronary flow reserve (>2.5) to any detectable extent.

  2. 2.

    The clinically silent zone, where stenosis ranging from 40% to 70% may marginally reduce the coronary flow reserve without reaching the critical threshold required to provoke ischemia with the usual stresses.

  3. 3.

    The severe stenosis range (70%–90%), where critical stenosis reduces coronary flow reserve less than 2.0 and myocardial ischemia is usually elicited when a stress is applied.

  4. 4.

    The very severe stenosis range (>90%), producing a marked transstenotic pressure drop at rest, with a reduction of baseline myocardial blood flow and a coronary flow reserve close to 1, or even less: in these patients, the administration of a coronary vasodilator actually decreases the poststenotic flow for steal phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gould KL, Lipscomb K (1974) Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol 34:48–55

    Article  PubMed  CAS  Google Scholar 

  2. Uren NG, Melin JA, De Bruyne B, et al (1994) Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 330:1782–1788

    Article  PubMed  CAS  Google Scholar 

  3. White CW, Wright CB, Doty DB, et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    Article  PubMed  CAS  Google Scholar 

  4. Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    Article  PubMed  CAS  Google Scholar 

  5. Varga A, Picano E, Cortigiani L, et al (1996) Does stress echocardiography predict the site of future myocardial infarction? A large-scale multicenter study. J Am Coll Cardiol 28:45–51

    Article  PubMed  CAS  Google Scholar 

  6. Strauer BE (1990) The significance of coronary reserve in clinical heart disease. J Am Coll Cardiol 15:775–783

    Article  PubMed  CAS  Google Scholar 

  7. Gould KL (1991) Comparison of PET and other imaging techniques. In: Gould KL (ed) Coronary artery stenosis. Elsevier, Amsterdam

    Google Scholar 

  8. Saraste M, Koskenvuo J, Knuuti J, et al (2001) Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol 21:114–122

    Article  PubMed  CAS  Google Scholar 

  9. Ono S, Nohara R, Kambara H, Okuda K, Kawai C (1992) Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation. 85:1125–1131

    Article  PubMed  CAS  Google Scholar 

  10. Iliceto S, Marangelli V, Memmola C, et al (1991) Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamole-induced coronary vasodilation. Circulation 83:61–69

    Article  PubMed  CAS  Google Scholar 

  11. Hutchinson SJ, Shen A, Soldo S, et al (1996) Transesophageal assessment of coronary flow velocity reserve during “regular” and “high”-dose dipyridamole stress testing. Am J Cardiol 77:1164–1168

    Article  PubMed  CAS  Google Scholar 

  12. Hozumi T, Yoshida K, Ogata Y, et al (1998) Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation 97:1557–1562

    Article  PubMed  CAS  Google Scholar 

  13. Caiati C, Montaldo C, Zedda N, et al (1999) New noninvasive method for coronary flow reserve assessment: contrast-enhanced transthoracic second harmonic echo Doppler. Circulation 99:771–778

    Article  PubMed  CAS  Google Scholar 

  14. Lim HE, Shim WJ, Rhee H, et al (2000) Assessment of coronary flow reserve with transthoracic Doppler echocardiography: comparison among adenosine, standard-dose dipyridamole, and high-dose dipyridamole. J Am Soc Echocardiogr 13:264–270

    Article  PubMed  CAS  Google Scholar 

  15. Daimon M, Watanabe H, Yamagishi H, et al (2001) Physiologic assessment of coronary artery stenosis by coronary flow reserve measurements with transthoracic Doppler echocardiography: comparison with exercise thallium-201 single photon emission computed tomography. J Am Coll Cardiol 37:1310–1315

    Article  PubMed  CAS  Google Scholar 

  16. Caiati C, Zedda N, Montaldo C, et al (1999) Contrast-enhanced transthoracic second harmonic echo Doppler with adenosine: a noninvasive, rapid and effective method for coronary flow reserve assessment. J Am Coll Cardiol 34:122–130

    Article  PubMed  CAS  Google Scholar 

  17. Pizzuto F, Voci P, Mariano E, et al (2001) Assessment of flow velocity reserve by transthoracic Doppler echocardiography and venous adenosine infusion before and after left anterior descending coronary artery stenting. J Am Coll Cardiol 38:155–162

    Article  PubMed  CAS  Google Scholar 

  18. Badger RS, Brown BG, Josephson MA, et al (1986) Hyperemic myocardial perfusion imaging for noninvasive detection of coronary disease in man: comparison of treadmill exercise and intravenous dipyridamole infusion. Can J Cardiol Suppl A:186A–194A

    Google Scholar 

  19. Kawano H, Fujii H, Motoyama T, et al (2000) Myocardial ischemia due to coronary artery spasm during dobutamine stress echocardiography. Am J Cardiol 85:26–30

    Article  PubMed  CAS  Google Scholar 

  20. Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111

    Article  PubMed  CAS  Google Scholar 

  21. Picano E (1992) Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation 85:1604–1612

    Article  PubMed  CAS  Google Scholar 

  22. Martin TW, Seaworth JF, Johns JP, et al (1992) Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann Intern Med 116:190–196

    PubMed  CAS  Google Scholar 

  23. Rossen JD, Quillen JE, Lopez AG, et al (1990) Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J Am Coll Cardiol 15:373–377

    Article  Google Scholar 

  24. Rigo F, Richieri M, Pasanisi E, et al (2003) Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol 91:269–73

    Article  PubMed  Google Scholar 

  25. Nohtomi Y, Takeuchi M, Nagasawa K, et al (2003) Simultaneous assessment of wall motion and coronary flow velocity in the left anterior descending coronary artery during dipyridamole stress echocardiography. J Am Soc Echo, 17:457–463

    Article  Google Scholar 

  26. Lowenstein J, Tiano C, Marquez G, et al (2003) Simultaneous analysis of wall motion and coronary flow reserve of the left anterior descending coronary artery by transthoracic Doppler echocardiography during dipyridamole stress. J Am Soc Echo, 17:735–744

    Google Scholar 

  27. Picano E, Palinkas A, Amyot R (2001) Diagnosis of myocardial ischemia in hypertensive patients. J Hypertens 19:1–7

    Article  Google Scholar 

  28. Lattanzi F, Picano E, Bolognese L, et al (1991) Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Correlation with exercise electrocardiography. Circulation 83:1256–1262

    Article  PubMed  CAS  Google Scholar 

  29. Billinger M, Seiler C, Fleisch M, et al (2001) Do beta-adrenergic blocking agents increase coronary flow reserve? J Am Coll Cardiol 38:1866–1871

    Article  PubMed  CAS  Google Scholar 

  30. Voci P, Pizzuto F, Mariano E et al (2002) Measurement of coronary flow reserve in the anterior and posterior descending coronary arteries by transthoracic Doppler ultrasound. Am J Cardiol 90:988–91

    Article  PubMed  Google Scholar 

  31. Ueno Y, Nakamura Y, Takashima H et al (2002) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardiogr 15:1074–9

    Article  PubMed  Google Scholar 

  32. Neglia D, Michelassi C, Trivieri MG, et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  33. Schächinger V, Britten M, Zeiher A (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    Article  PubMed  Google Scholar 

  34. Albertal M, Voskuil M, Piek JJ, et al; The Doppler Endpoints Balloon Angioplasty Trial Europe (DEBATE) II Study Group (2002) Coronary flow velocity reserve after percutaneous interventions is predictive of periprocedural outcome. Circulation 105:1573–1578

    Article  PubMed  CAS  Google Scholar 

  35. Chandraratna PA, Tak T, Ismail Y, et al (1997) Visualization and measurement of flow velocity and flow reserve in aortocoronary saphenous vein bypass grafts by transesophageal echocardiography. Am J Cardiol 80:955–958

    Article  PubMed  CAS  Google Scholar 

  36. De Bono DP, Samani NJ, Spyt TJ, et al (1992) Transcutaneous ultrasound measurements of blood flow in internal mammary artery to coronary artery graft. Lancet 339:379–381

    Article  PubMed  Google Scholar 

  37. Fusejima K, Takahara Y, Sudo Y, et al (1990) Comparison of coronary hemodynamics in patients with internal mammary artery and saphenous vein coronary artery bypass grafts: a noninvasive approach using combined two-dimensional and Doppler echocardiography. J Am Coll Cardiol 15:131–139

    Article  PubMed  CAS  Google Scholar 

  38. Takagi T, Yoshikawa J, Yoshida K, et al (1993) Noninvasive assessment of left internal mammary artery graft patency using duplex Doppler echocardiography from supraclavicular fossa. J Am Coll Cardiol 22:1647–1652

    Article  PubMed  CAS  Google Scholar 

  39. Ehrsam JE, Spittell PC, Seward JB (1998) Internal mammary artery: 100% visualization with new ultrasound technology. J Am Soc Echocardiogr 11:10–12

    Article  PubMed  CAS  Google Scholar 

  40. Mauric A, De Bono DP, Samani NJ, et al (1994) Transcutaneous ultrasound assessment of internal thoracic artery to coronary artery grafts in patients with and without ischemic symptoms. Br Heart J 72:476–481

    Article  PubMed  CAS  Google Scholar 

  41. Crowley JJ, Shapiro LM (1995) Noninvasive assessment of left internal mammary artery graft patency using transthoracic echocardiography. Circulation 92:1125–1130

    Article  Google Scholar 

  42. Pezzano A, Fusco R, Child M, et al (1997) Assessment of left internal mammary artery grafts using dipyridamole Doppler echocardiography. Am J Cardiol 80:1603–1606

    Article  PubMed  CAS  Google Scholar 

  43. Katz WE, Zenati M, Mandarino WA, et al (1999) Assessment of left internal mammary artery graft patency and flow reserve after minimally invasive direct coronary artery bypass. Am J Cardiol 84:795–801

    Article  PubMed  CAS  Google Scholar 

  44. Fukata Y, Horike K, Fujimoto E, et al (1999) Evaluation of the internal thoracic arterial graft patency by the transthoracic Doppler method under continuous intravenous infusion of adenosine triphosphate disodium. Ann Thorac Cardiovasc Surg 5:310–320

    PubMed  CAS  Google Scholar 

  45. Voudris V, Athanassopoulos G, Vassilikos V, et al (1999) Usefulness of flow reserve in the left internal mammary artery to determine graft patency to the left anterior descending coronary artery. Am J Cardiol 83:1157–1163

    Article  PubMed  CAS  Google Scholar 

  46. De Simone L, Caso P, Severino S, et al (1999) Noninvasive assessment of left and right internal mammary artery graft patency with high-frequency transthoracic echocardiography. J Am Soc Echocardiogr 12:841–849

    Article  PubMed  Google Scholar 

  47. Tavilla G, Pijls NH, Berreklouw E, et al (1999) Noninvasive assessment of right gastroepiploic artery graft patency using transcutaneous color Doppler echocardiography. Ann Thorac Surg 67:624–628

    Article  PubMed  CAS  Google Scholar 

  48. Chirillo F, Bruni A, Balestra G, et al (2001) Assessment of internal mammary artery and saphenous vein graft patency and flow reserve using transthoracic Doppler echocardiography. Heart 86:424–431

    Article  PubMed  CAS  Google Scholar 

  49. Galderisi M, Cicala S, Caso P et al (2002) Coronary flow reserve and myocardial diastolic dysfunction in arterial hypertension. Am J Cardiol 90:860–4

    Article  PubMed  Google Scholar 

  50. Dimitrow PP (2003) Transthoracic Doppler echocardiography. Noninvasive diagnostic window for coronary flow reserve assessment. Cardiovascular Ultrasound 1:4

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picano, E., Rigo, F., Lowenstein, J. (2003). Coronary Flow Reserve. In: Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05096-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05096-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05098-9

  • Online ISBN: 978-3-662-05096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics