Parameter Control in Evolutionary Algorithms

  • A. E. Eiben
  • J. E. Smith
Part of the Natural Computing Series book series (NCS)


The issue of setting the values of various parameters of an evolutionary algorithm is crucial for good performance. In this chapter we discuss how to do this, beginning with the issue of whether these values are best set in advance or are best changed during evolution. We provide a classification of different approaches based on a number of complementary features, and pay special attention to setting parameters on-the-fly. This has the potential of adjusting the algorithm to the problem while solving the problem.


Migration Covariance Recombination Eter Encapsulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.CrossRefGoogle Scholar
  2. 2.
    J.E. Smith and T.C. Fogarty. Operator and parameter adaptation in genetic algorithms. Soft Computing, 1(2):81–87, 1997.CrossRefGoogle Scholar
  3. 3.
    J.E. Smith. On appropriate adaptation levels for the learning of gene linkage. Journal of Genetic Programming and Evolvable Machines, 3(2):129–155, 2002.CrossRefMATHGoogle Scholar
  4. 4.
    T. Back. Self-adaptation. Chapter 21, pages 188–211 in T. Bäck, D.B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 2: Advanced Algorithms and Operators. Institute of Physics Publishing, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. E. Eiben
    • 1
  • J. E. Smith
    • 2
  1. 1.Faculty of SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Faculty of Computing, Engineering and Mathematical SciencesUniversity of the West of EnglandBristolUK

Personalised recommendations