Advertisement

Biochips pp 61-69 | Cite as

DNA Hybridization Detection by Electrochemical Impedance Spectroscopy and Photoelectrochemistry

  • Q.-W. Li
  • G.-A. Luo
  • J. Feng
  • D. W. Cai
  • Q. Ouyang
Chapter
  • 196 Downloads
Part of the Biological and Medical Physics Series book series (BIOMEDICAL)

Abstract

Owing to the special properties of ssDNA and dsDNA molecules in their structures and electronic behaviors, they may give us many ideas for the fabrication of gene sensors and DNA-chips. In this work, photoelectrochemistry was first employed to characterize the behaviors of the self-assembled ssDNA probe modified electrode and the resultant dsDNA modified electrode. The obvious decrease in the photocurrent of the dsDNA modified electrode at open potential or a bias voltage indicated that photoelectrochemistry is another useful method for DNA hybridization detection. Concerning the special design of ssDNA probes, there is a further discussion on the relationship between the properties of DNA molecules and their photoelectric behaviors. In addition, the electrochemical impedance method was also employed to characterize and verify the hybridization event.

Keywords

Gold Electrode Modify Electrode Hybridization Event Complementary Part Hybridization Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akin MR et al. (1996) Science 273: 475ADSCrossRefGoogle Scholar
  2. Bardea A, Patolsky F and Willner I (1999) Chem Commun 21: 21–22CrossRefGoogle Scholar
  3. Dandliker PJ, Nunez ME and Barton JK (1998) Biochemistry 37: 6491CrossRefGoogle Scholar
  4. Hall DB, Holmlin RE and Barton JK (1996) Nature 382: 731ADSCrossRefGoogle Scholar
  5. Hashimoto K, Ito K and Ishimori Y (1994) Anal Chem 66: 3830CrossRefGoogle Scholar
  6. Imahori H, Norieda H and Ozawa S (1998) Langmuir 14: 5335CrossRefGoogle Scholar
  7. Kelley SO and Barton JK (1998) Science 283: 375ADSCrossRefGoogle Scholar
  8. Lewis FD, Wu TF and Zhang YF (1997) Science 277: 673CrossRefGoogle Scholar
  9. Millan KM and Mikkelsen SR (1993) Anal Chem 65: 2317CrossRefGoogle Scholar
  10. Millan KM, Sarraullo A and Mikkelsen SR (1994) Anal Chem 66: 2943CrossRefGoogle Scholar
  11. Nguyen Q and Heffelfinger DM (1995) Anal.Biochem 226: 59CrossRefGoogle Scholar
  12. Okahata Y, Matsunobo Y and Ijiro K (1992) J Am Chem Soc 114: 8299CrossRefGoogle Scholar
  13. Palecek E, Fojta M, Tomschik M and Wang J (1998) Biosensor & Bioelectrics 13: 621CrossRefGoogle Scholar
  14. Piunno PAE, Krull UJ and Hudson RHE (1995) Anal Chem 67: 2635CrossRefGoogle Scholar
  15. Saito I, Takayama M, Sugiyama H and Nakatani K (1995) J Am Chem Soc 117: 6460Google Scholar
  16. Steel AB, Herne TM and Tarlov MJ (1998) Anal Chem 70: 4670CrossRefGoogle Scholar
  17. Su H, Chong S and Thompson M (1996) Langmuir 12: 2247CrossRefGoogle Scholar
  18. Wang J, Rivas G and Cai X (1997) Anal Chim Acta 347: 1CrossRefGoogle Scholar
  19. Watts HJ, Yeung D and Parkes H (1995) Anal Chem 67: 4283CrossRefGoogle Scholar
  20. Wu DG, Huang CH and Gan LB (1998) Langmuir 14: 3783CrossRefGoogle Scholar
  21. Zhang CY, Feng J and Ci YX (1998) Bioelectro & Bioenerg 46 (1): 145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Q.-W. Li
  • G.-A. Luo
  • J. Feng
  • D. W. Cai
  • Q. Ouyang

There are no affiliations available

Personalised recommendations