Biochips pp 11-34 | Cite as

Medical Therapy: The Next Frontier of Biochip and Biomedical Nanotechnology

  • M. Ferrari
  • D. Friend
  • D. Hansford
  • S. S. Kulkarni
  • F. Martin
Part of the Biological and Medical Physics Series book series (BIOMEDICAL)


In the recent past rapid strides have been made to exploit the applications of nanotechnology in biomedical applications. While the focus of such research has primarily been on diagnostic tools, the therapeutic applications have not been so widely researched. This chapter seeks to review the state of the art of nanotechnology in therapeutic applications.

The manipulation of conventional lithographic techniques to produce monodisperse nanoporous, biocompatible, silicon membranes has been described. The potential use of these microfabricated nanoporous membranes in site-specific drug delivery applications has been investigated and their use in the fabrication of immunoisolating biocapsules has been elucidated. Specifically, an insulin-delivering microfabricated biocapsule has been described. Using the same nanotechnlogy principles, an innovative, nanotechnology-based systemic treatment method for metastatic deposits, employing a microfabricated Natural Killer (NK) mimicking cell has been propounded.


Natural Killer Cell Sacrificial Layer Silicon Membrane Cell Encapsulation Conventional Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebischer P, Goddard M, Signore AP and Timpson RL (1994) Exp Neurol 126 (2): 151–158CrossRefGoogle Scholar
  2. Akin T and Najafi K (1994) IEEE Transactions on Biomedical Engineering 4 (4): 305–313CrossRefGoogle Scholar
  3. Anderson DJ, Najafi K, Tanghe SJ, Evans DA, Levy KL, Hetre JF, Xue X, Zappia JJ and Wise KD (1989) IEEE Transactions on Biomedical Engineering 36 (7): 693–704CrossRefGoogle Scholar
  4. Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Olsson B, Dagerlind A, Wigzell H, Oman HGB and Gudmundsson GH (1996) Vet Immunol Immunopathol 123–126Google Scholar
  5. Baxter GT, Bousse LJ, Dawes TD, Libby JM, Modlin DN, Owick JC and Parce JW (1994) Clinical Chemistry 40 (9): 1800–1804Google Scholar
  6. Benjamin JD, Mears AL and White JC (1988) Active silicon implant devices. United States Patent No. 4, 793, 825Google Scholar
  7. Bergveld P (2000) Biomed Microdevices 185–195Google Scholar
  8. Brazzle JD, Papautsky I and Frazier AB (1998) Proc. SPIE Micro Fluidic Devices and Systems 116–124Google Scholar
  9. Campbell PK, Jones KE, HR J, Horch KW and Nomann RA (1991) IEEE Transactions on Biomedical Engineering 38 (8): 758–768CrossRefGoogle Scholar
  10. Chen J and Wise K (1994) IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, SCGoogle Scholar
  11. Chu W-H and Ferrari M (1998) Micromachined Capsules Having Porous Membranes and Bulk Supports, United States Patent No. 5, 798, 042Google Scholar
  12. Colton CK (1996) Trends Biotechnol 158–162Google Scholar
  13. Conhaim RL and Rodenkirch LA (1998) J Appl Physiol 85 (1): 47–52Google Scholar
  14. Davis SS (1997) Trends Biotechnol 217–224Google Scholar
  15. Deamer DW and Akeson M (2000) Trends Biotechnol 147–151Google Scholar
  16. Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A and Ferrari M (1998) Biotechnol Bioeng 118–120Google Scholar
  17. Desai TA, Hansford D and Ferrari M (1999a) J Membr Sci 221–231Google Scholar
  18. Desai TA, Hansford DJ, Kulinsky L, Nashat AH, Rasi G, Tu J, Wang Y, Zhang M and Ferrari M (1999b) Biomed Microdevices 11–40Google Scholar
  19. Edell DJ (1986) IEEE Transactions on Biomedical Engineering 33 (2): 203–214CrossRefGoogle Scholar
  20. Edell DJ, Churchill JN and Gourley IM (1982) Biomat Med Dev Artif Org 10 (2): 103–122Google Scholar
  21. Evans J, Liepmann D and Pisano AP (1997) IEEE Proc Micro Electro Mechanical System Workshop, Nagoya, JapanGoogle Scholar
  22. Ferrari M (2000) Therapeutic Microdevices and Methods of Making and Using Same, United States Patent No 6, 107, 102, (issued).Google Scholar
  23. Ferrari M, Chu W-H, Desai T, Hansford D, Mazzoni G, Huen T and Zhang M, Silicon Nanotechnology for Biofiltration and Immunoisolated Cell Xenografts, Thin Films and Surfaces for Bioactivity and Biomedical Applications, MRS, Vol. 414, Eds. Catherine Cottell, et al, pp. 101–106, Materials Research Society 1996.Google Scholar
  24. Fodor SPA (Washington DC) (1997) Science 393, 395Google Scholar
  25. Fujimasa I Micromachining technology and biomedical engineering (1993) Appl Bio-chem Biotechnol 38 (3): 233–242CrossRefGoogle Scholar
  26. Giavazzi R and Giulia T (1999) Forum (Genova) 9: 261–272Google Scholar
  27. Gourley PL (1996) Nature Medicine 2 (8): 942–944MathSciNetCrossRefGoogle Scholar
  28. Gu D-L, Gonzalez AM, Printz MA, Doukas J, Ying W, D’ Andrea M, Hoganson DK, Curie- DT, Douglas JT, Sosnowski BA, Baird A, Aukerman SL and Pierce GF (1999) Cancer Res 2608–2614Google Scholar
  29. Hansford D, Desai T and Ferrari M, “Nano-Scale Size-Based Biomolecular Separation Technology”, Biochip Technologies, Eds. Kricka and Cheng, Harwood Academic Publishers, pp. 341–362, 2001.Google Scholar
  30. Henry S, McAllister DV, Allen MG and Prausnitz MR (1998) J Pharm Sci 922–925Google Scholar
  31. Henry S (1997) Master’s Thesis: Department of Chemical Engineering. Georgia Insti-tute of Technology: Atlanta, GAGoogle Scholar
  32. Holash J, Wiegand SJ and Yancopoulos GD (1999) Oncogene 5356–5362Google Scholar
  33. Kittilsland G, Stemme G and Norden B (1990) Sensors and Actuators A21–A23: 904–907Google Scholar
  34. Kovacs GTA, Storment CW, Halks-Miller M, Belczynski CR, Della Santina CC, Lewis ER and MNI (1994) IEEE Transactions on Biomedical Engineering 41: 567–577CrossRefGoogle Scholar
  35. Latres E, Closa D, Gomez-Sierra JM, Alemany M and Remesae X (1992) Arch Int’l Physiol Biochim Biophys 100 (3): 263–265CrossRefGoogle Scholar
  36. Lim F and Sun AM (Washington DC) (1980) Science 90: 8–10Google Scholar
  37. Lin L and Pisano AP (1999) IEEE J Microelectromechanical Systems 8(1): 78–84 Li RH (1998) Adv Drug Delivery Rev 87–109Google Scholar
  38. Liotta LaS-S (1993) Principles of Molecular Cell Biology of Cancer: Cancer Metas-tasis in Cancer Principles and Practice In: DeVita V, Hellman S and Rosenberg S (eds) Lippincott: Philadelphia, pp 134–139Google Scholar
  39. Lonsdale HK and Membr J (1982) Sci 81–181Google Scholar
  40. McAllister DV, Henry S, Allen MG and Prausnitz MR (1998) Proc Int Symp Con-trolled Release Bioact Mater 30–31Google Scholar
  41. McConnell HN, Owicki JC, Parce JW, Miller DW, Baxter GT and Wada HG (1992) Science 257 (5078): 1906–1912ADSCrossRefGoogle Scholar
  42. McGall GH, Barone AD, Beecher JE, Diggelman M, Fodor SPA, Goldberg MJ, Ngo N and Rava RP (1999) Light-directed synthesis of high-density oligonucleotide probe arrays for nucleic acid sequence analysis In: R. Epton ( Ed ), Innovation and Perspectives in Solid Phase Synthesis Combinatorial Libraries 97–100Google Scholar
  43. Mayflower Scientific Limited, Birmingham Morrow CaC (1993) Mechanisms of Antineoplastic Drug Resistance in Cancer Prin-ciples and Practice of Oncology In: DeVita V, Hellman S, and Rosenberg S (eds) Lippincott: Philadelphia, pp 340–348Google Scholar
  44. Nashat AH, Moronne M and Ferrari M (1998) Biotechnol Bioeng 137–146Google Scholar
  45. Reed ML, Wu C, Kneller J, Watkins S, Vorp DA, Nadeem A, Weiss LE, Rebello K, Mescher M, Smith AJC, Rosenblum W and Feldman MD (1998) J Pharm Sci 1387–1394Google Scholar
  46. Roberts T, De Boni U and Sefton MV (1996) Biomaterials 267–75Google Scholar
  47. Rogers BE, Douglas JT, Ahlem C, Buchsbaum DJ, Frincke J and Curiel DT (1997) Gene Ther 1387–1392Google Scholar
  48. Sagen J, Wang H, Tresco PA and Aebischer (1993) J Neurosci 2415–23Google Scholar
  49. Santini JT, Jr, Cima MJ and Langer R (London) (1999) Nature 335–338.Google Scholar
  50. Talbot NH and Pisano AP (1998) Tech Dig, Solid-State Sensor and Actuator Work-shop Hilton Head, SCGoogle Scholar
  51. Tu JK, Huen T, Szema R and Ferrari M (1999) Biomed Microdevices 113–119 Van Rijn CJM and Elwenspoek MC (1995) IEEE MEMS 83–87Google Scholar
  52. Van Rijn CJM, Veldhuis GJ and Kuiper S (1998) Nanotechnology 9 (4): 343–345ADSCrossRefGoogle Scholar
  53. Volkmuth WD, Duke T, Austin RH and Cox EC (1995) Trapping of branched DNA in microfabricated structures (1992) Proc Natl Acad Sci (USA) 92 (15): 6887–6891CrossRefGoogle Scholar
  54. Winn SR, Hammang JP, Emerich DF, Lee A, Palmiter RD and Baetge EE (1994) Proc. Natl Acad Sci (USA) 2324–8Google Scholar
  55. Wise KD, Najafi K, Ji J, Hetke JF, Hoogerwerf A, Anderson DJ, BeMent SL, Ghazzi M, Baer W, Hull T, and Yang Y (1990) Annual Conference of the IEEE Engineering in Medicine and Biology Society, (Philadelphia) 12 (5): 2334–2335Google Scholar
  56. Yang X, Yang JM, Wang XQ, Meng E, Tai YC and Ho CM (1998) Proceedings of IEEE The Eleventh Annual International Workshop on Micro Electro Mechanical Systems (MEMS ’88), Heidelberg, Germany, January 25–29, 1998Google Scholar
  57. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D and Jain RK (1994) Cancer Res 335: 2–6Google Scholar
  58. Zhang M, Desai T and Ferrari M (1998) Biomaterials 953–960Google Scholar
  59. Zhang M and Ferrari M (1997) Biotechnol Bioeng 618–625Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. Ferrari
  • D. Friend
  • D. Hansford
  • S. S. Kulkarni
  • F. Martin

There are no affiliations available

Personalised recommendations