Segmentation

  • Pierre Soille
Chapter

Abstract

The segmentation of an image can be defined as its partition into different regions, each having certain properties. In a segmented image, the elementary picture elements are no longer the pixels but connected sets of pixels. Once the image has been segmented, measurements are performed on each region and adjacency relations between regions can be investigated. Image segmentation is therefore a key step towards the quantitative interpretation of image data.

Keywords

Foam Polyurethane Sorting Crest Zucker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and references

  1. R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (6): 641–647, 1994.CrossRefGoogle Scholar
  2. S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In J. Serra and P. Soille, editors, Mathematical Morphology and its Applications to Image Processing, pages 69–76. Kluwer Academic Publishers, 1994.Google Scholar
  3. S. Beucher and F. Meyer. The morphological approach to segmentation: the watershed transformation. In E. Dougherty, editor, Mathematical Morphology in Image Processing, volume 34 of Optical Engineering, chapter 12, pages 433–481. Marcel Dekker, New York, 1993.Google Scholar
  4. J. Crespo, R. Schafer, J. Serra, C. Gratin, and F. Meyer. The flat zone approach: a general low-level region merging segmentation method. Signal Processing, 62 (1): 37–60, 1997.MATHCrossRefGoogle Scholar
  5. K. Fu and J. Mui. A survey on image segmentation. Pattern Recognition, 13: 3–16, 1981.MathSciNetCrossRefGoogle Scholar
  6. C. Gratin and F. Meyer. Mathematical morphology in three dimensions. In 8th Int. Congress for Stereology, pages 551–558, August 1992.Google Scholar
  7. R. Haralick and L. Shapiro. Image segmentation techniques. Computer vision, graphics, and image processing, 29: 100–132, 1985.Google Scholar
  8. P. Hariharan and D. Malacara, editors. Interference, interferometry, and interferometric metrology, volume MS 110 of SPIE Milestones Series, 1995.Google Scholar
  9. E. Isaac and R. Singleton. Sorting by address calculation. Journal of the ACM, 3: 169–174, 1956.CrossRefGoogle Scholar
  10. C. Lantuéjoul. Geodesic segmentation. In L. Uhr and K. Preston Jr., editors, Multicomputers and Image Processing: Algorithms and Programs, pages 111–124. Academic Press, New York, 1982.Google Scholar
  11. A. Mehnert and P. Jackway. An improved seeded region growing. Pattern Recognition Letters, 18: 1065–1071, 1997.CrossRefGoogle Scholar
  12. F. Meyer. Un algorithme optimal de ligne de partage des eaux. In Reconnaissance des Formes et Intelligence Artificielle, 8e congrès,pages 847–857, Lyon-Villeurbanne, 1991. AFCET.Google Scholar
  13. F. Meyer. Topographic distance and watershed lines. Signal Processing, 38 (1): 113–125, July 1994.MATHGoogle Scholar
  14. F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communication and Image Representation, 1 (1): 21–46, September 1990.CrossRefGoogle Scholar
  15. L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (12): 1163–1173, 1996.CrossRefGoogle Scholar
  16. W. Osten. Digitale Verarbeitung und Auswertung von Interferenzbildern. Akademie Verlag, Berlin, 1991.Google Scholar
  17. N. Pal and S. Pal. A review on image segmentation techniques. Pattern Recognition, 26: 1277–1294, 1993.CrossRefGoogle Scholar
  18. P. Soille. Partitioning of multispectral images using mathematical morphology. Vision Voice Magazine, 6 (4): 283–293, 1992.Google Scholar
  19. P. Soille. Morphological phase unwrapping. Optics and Lasers in Engineering, 32 (4): 339–352, 2000.CrossRefGoogle Scholar
  20. P. Soille and M. Ansoult. Automated basin delineation from digital elevation models using mathematical morphology. Signal Processing, 20: 171–182, June 1990.CrossRefGoogle Scholar
  21. P. Soille and L. Vincent. Determining watersheds in digital pictures via flooding simulations. In M. Kunt, editor, Visual Communications and Image Processing’90, volume 1360, pages 240–250, Bellingham, 1990. Society of Photo-Instrumentation Engineers.Google Scholar
  22. L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (6): 583–598, June 1991.CrossRefGoogle Scholar
  23. S. Zucker. Region growing: childhood and adolescence. Computer Graphics and Image Processing, 5: 382–399, 1976.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Pierre Soille
    • 1
  1. 1.EC Joint Research CentreIspra (Va)Italy

Personalised recommendations