Advertisement

Geodesic Transformations

  • Pierre Soille
Chapter

Abstract

All morphological transformations discussed so far involved combinations of one input image with specific structuring elements. The approach taken with geodesic transformations is to consider two input images. A morphological transformation is applied to the first image and it is then forced to remain either above or below the second image. Authorised morphological transformations are restricted to elementary erosions and dilations. The choice of specific structuring elements is therefore eluded. In practice, geodesic transformations are iterated until stability making the choice of a size unnecessary. It is actually the combination of appropriate pairs of input images which produces new morphological primitives. These primitives are at the basis of formal definitions of many important image structures for both binary and grey scale images.

Keywords

Input Image Contour Line Grey Scale Image Marker Image Mask Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and references

  1. S. Beucher. Segmentation d’Images et Morphologie Mathématique. PhD thesis, Ecole des Mines de Paris, June 1990.Google Scholar
  2. E. Breen and R. Jones. Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding, 64 (3): 377–389, 1996.CrossRefGoogle Scholar
  3. J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (6): 679–698, November 1986.CrossRefGoogle Scholar
  4. V. Goetcherian. From binary to grey tone image processing using fuzzy logic con-cepts. Pattern Recognition, 12: 7–15, 1980.CrossRefGoogle Scholar
  5. M. Grimaud. Géodésie Numérique en Morphologie Mathématique. Application à la Détection Automatique de Microcalcifications en Mammographies Numériques. PhD thesis, Ecole des Mines de Paris, December 1991.Google Scholar
  6. M. Grimaud. New measure of contrast: dynamics. In P. Gader, E. Dougherty, and J. Serra, editors, Image Algebra and Morphological Image Processing III, volume SPIE-1769, pages 292–305, July 1992.Google Scholar
  7. P. Hanusse and P. Guillataud. Sémantique des images par analyse dendronique. In Reconnaissance des Formes et Intelligence Artificielle, pages 577–588. AFCET, 1991.Google Scholar
  8. T. Jochems. Morphologie Mathématique Appliquée au Contrôle Industriel de Pièces Coulées. PhD thesis, Ecole des Mines de Paris, September 1994.Google Scholar
  9. G. Matheron. Les nivellements. Technical report, Ecole des Mines de Paris, Centre de Morphologie Mathématique, 1997.Google Scholar
  10. F. Meyer. From connected operators to levelings. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and its Applications to Image and Signal Processing, volume 12 of Computational Imaging and Vision, pages 191–198, Dordrecht, 1998a. Kluwer Academic Publishers.Google Scholar
  11. F. Meyer. The levelings. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and its Applications to Image and Signal Processing, volume 12 of Computational Imaging and Vision, pages 199–206, Dordrecht, 1998b. Kluwer Academic Publishers.Google Scholar
  12. F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communication and Image Representation, 1 (1): 21–46, September 1990.CrossRefGoogle Scholar
  13. F. Meyer and P. Maragos. Nonlinear scale-space representation with morphological levelings. Journal of Visual Communication and Image Representation, 11 (3): 245–265, 2000.CrossRefGoogle Scholar
  14. P. Salembier. Region-based filtering of images and video sequences: a morphological viewpoint. In S. Mitra and G. Sicuranza, editors, Non-linear Image Processing, chapter 9, pages 249–288. Academic Press, San Diego, 2000.Google Scholar
  15. P. Soille. Spatial distributions from contour lines: an efficient methodology based on distance transformations. Journal of Visual Communication and Image Representation, 2 (2): 138–150, June 1991.CrossRefGoogle Scholar
  16. P. Soille and M. Ansoult. Automated basin delineation from digital elevation models using mathematical morphology. Signal Processing, 20: 171–182, June 1990.CrossRefGoogle Scholar
  17. P. Soille and C. Gratin. An efficient algorithm for drainage networks extraction on DEMs. Journal of Visual Communication and Image Representation, 5 (2): 181–189, June 1994.CrossRefGoogle Scholar
  18. L. Vincent. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, 2 (2): 176–201, April 1993.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Pierre Soille
    • 1
  1. 1.EC Joint Research CentreIspra (Va)Italy

Personalised recommendations