Skip to main content

Elucidating Molecular Mechanisms of Alzheimer’s Disease in Microglial Cultures

  • Conference paper
Neuroinflammation — From Bench to Bedside

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 39))

Abstract

Particularly in the context of innate inflammatory mechanisms, micro-glia appear to play important roles in a wide range of neurodegenerative diseases, including multiple sclerosis, Parkinson’s disease, and human immunodeficiency virus (HIV)-associated dementia (reviewed in Banati et al. 1993; Dickson et al. 1993; McGeer et al. 1993). It should not be surprising, then, that microglial activation has been found to be a crucial event mediating inflammatory responses in Alzheimer’s disease (AD) (reviewed in Neuroinflammation Working Group 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ard MD, Cole GM, Wei J, Mehrie AP, Fratkin JD (1996) Scavenging of Alzheimer’s amyloid beta-protein by microglia in culture. J Neurosci Res 43: 190–192

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7: 111–118

    Article  PubMed  CAS  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games L, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid 13-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6: 916–919

    Article  PubMed  CAS  Google Scholar 

  • Brachova L, Lue, L-F, Schultz J, El Rashidy T, Rogers J (1993) Association cortex, cerebellum, and serum concentrations of C1Q and factor B in Alzheimer’s disease. Mol. Brain Res 18: 329–334

    Google Scholar 

  • Canning DR, Mckeon RJ, DeWitt DA, Perry G, Wujek JR, Frederickson RC, Silver J (1993) beta-Amyloid of Alzheimer’s disease induces reactive gliosis that inhibits axonal outgrowth. Exp Neurol 124: 289–98

    Google Scholar 

  • Cotter RL, Burke WJ, Thomas VS, Potter JF, Zheng J, Gendelman HE (1999) Insights into the neurodegenerative process of Alzheimer’s disease: a role for mononuclear phagocyte-associated inflammation an d neurotoxicity. J Leukoc Biol 65: 416–427

    PubMed  CAS  Google Scholar 

  • Davis, J.B, McMurray HF, Schubert D (1992) The amyloid beta-protein of Alzheimer’s disease is chemotactic for mononuclear phagocytes. Biochem Biophys Res Commun 189: 1096–1100

    Article  PubMed  CAS  Google Scholar 

  • DeGroot CJA, Montagne L, Janssen I, Ravid R, Van Der Valk P, Veerhuis R (2000) Isolation and characterization of adult microglial cells and oligodendrocytes Derived from postmortem human brain tissue. Brain Res Proto 5: 585–594

    Google Scholar 

  • Dickson DW, Lee SC, Mattiace LA, Yen SHC, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7: 75–83

    Article  PubMed  CAS  Google Scholar 

  • Edwards SW, Watson F, Gasmi L, Moulding DA, Quayle JA (1997) Activation of human neutrophils by soluble immune complexes: role of Fc gamma RII and Fc gamma R III b in stimulation of the respiratory burst and elevation of intracellular Cat+. Ann NY Acad Sci 832: 341–357

    Article  PubMed  CAS  Google Scholar 

  • El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 382: 716–719

    Article  PubMed  Google Scholar 

  • Fiala M, Zhang L, Gan Z, Sherry B, Taub D, Graves MC, Hama S, Way D, Weinand M, Witte M, Lorton D, Duo Y-M, Roher AE (1998) Amyloid-ß induces chemokine secretion and monocyte migration across a human blood-brain barrier model. Mol Med 4: 480–489

    PubMed  CAS  Google Scholar 

  • Frautschy SA, Cole GM, Baird A (1992) Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid. Am J Pathol 140: 1389–1399

    PubMed  CAS  Google Scholar 

  • Frautschy SA, Fusheng Y, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsW transgenic mice. Am J Path 152: 307–317

    PubMed  CAS  Google Scholar 

  • Gehrmann J, Banati RB, Kreutzberg GW (1993) Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol 48: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Baker TJ (1986) Characterization of amoeboid microglia isolated from developing mammalian brain. J Neurosci 6: 21–28

    Google Scholar 

  • Giulian D, Haverkamp LJ, Yu J, Karshin W, Tom D, Li J, Kazanskaia, Kirkpatrick JB, Roher AE (1998) The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer’s disease. J Biol Chem 273: 29719–29726

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Buttini M, Wyss-Coray T, McConlogue L, Kodama T, Pitas RE, Mucke L (1999) Elimination of the class A scavenger receptor does not affect amyloid plaque formation or neurodegeneration in transgenic mice expressing human amyloid protein precursors. Am J Pathol 155: 1741–1747

    Article  PubMed  CAS  Google Scholar 

  • Hulette CM, Downey BT, Burger PC (1992) Macrophage markers in diagnostic neuropathology. Am J Surg Pathol 16: 493–499

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T (1997) Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psych Clin Neurosci 51: 135–138

    Article  CAS  Google Scholar 

  • Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D (2000) Aß peptide immunization reduces behavioral impairment and plaques in a mouse model of Alzheimer’s disease. Nature 408: 979–982

    Article  PubMed  CAS  Google Scholar 

  • Kim Su, Sato Y, Silberberg DH, Pleasure DE, Rorke LB (1983) Long-term culture of human oligodendrocytes. J Neurol Sci 62: 295–301

    Article  PubMed  CAS  Google Scholar 

  • Kuo Y-M, Kokjohn TA, Beach TG, Sue LI, Brune D, Lopez JC, Kalback WM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Roher AE (2001) Comparative analysis of amyloid 13 chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem 276: 12991–12998

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Liu W, Brosnan CF, Dickson DW (1992) Characterization of primary human fetal dissociated central nervous system cultures with an emphasis on microglia. Lab Investig 67: 465–476

    PubMed  CAS  Google Scholar 

  • Ling EA, Wong WC (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7: 10–18

    Article  Google Scholar 

  • Lisak R, Pleasure D, Manning M, Saida T (1981) Long-term culture of bovine oligodendroglia isolated with a Percoll gradient. Brain Res 113: 165–170

    Google Scholar 

  • Lorton D (1997) (3-amyloid-induced IL-113 release from an activated human monocyte cell line is calcium-and G-protein-dependant. Mech Aging Dev 94:119–122

    Google Scholar 

  • Lorton D, Schaller J, Lala A, De Nardin E (2000) Chemotactic-like receptors and Abeta peptide induced responses in Alzheimer’s disease. Neurobiol Aging 21: 463–473

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Brachova L, Civin WH, Rogers J (1996a) Inflammation, AB deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropathol Exp Neurol 55: 1083–1088

    Google Scholar 

  • Lue LF, Brachova L, Walker DG, Rogers J (1996b) Characterization of glial cultures from rapid autopsies of Alzheimer’s and control patients. Neurobiol Aging 17: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy Jr. GM, Brachova L,Yan SD, Walker DG, Shen Y, Rogers J (2002a) Inflammatory repertoire of Alzheimer’s disease and non-demented elderly microglia in vitro. Glia (in press)

    Google Scholar 

  • Lue LF, Walker DG, Brachova L, Beach TG, Rogers J. Schmidt AM, Stern D, Yan SD (2002b) Microglial receptor for advanced glycation endproducts

    Google Scholar 

  • RAGE) in Alzheimer’s disease: identification of cellular activation mechanism. Exp Neurol (in press)

    Google Scholar 

  • McGeer P, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG (1993) Microglia in degenerative neurological disease. Glia 7: 84–92

    Article  PubMed  CAS  Google Scholar 

  • Meda L, Bonaiuto C, Szendrei GI, Ceska M, Rossi F, Cassatella MA (1995a) Beta-amyloid (25–35) induces the production of interleukin-8 from human monocytes. J Neuroimmunol 59: 29–33

    Article  PubMed  CAS  Google Scholar 

  • Meda L, Baron P, Prat E, Scarpini E, Scarlato G, Cassatella MA, Rossi F (1999) Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with beta-amyloid. J Neuroimmunol 93: 4–52

    Article  Google Scholar 

  • Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995b) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374: 647–650

    Article  PubMed  CAS  Google Scholar 

  • Meda L, Bernaconi S, Bonaiuto C, Sozzani S, Zhou D, Otvos L, Mantovani A, Rossi F, Cassatella MA (1996) Beta-amyloid (25–35) peptide and IFNgamma synergistically induce the production of the chemotactic cytokine MCP-1/JE in monocytes and microglial cells. J Immunol 157: 1213–1218

    PubMed  CAS  Google Scholar 

  • Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A13 peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408: 982–985

    Article  PubMed  CAS  Google Scholar 

  • Nakai M, Hojo K, Taniguchi T, Terashima A, Kawamata T, Hashimoto T, Maeda K, Tanaka C (1998) PKC and tyrosine kinase involvement in amyloid beta (25–35)-induced chemotaxis of microglia. NeuroReport 9: 3467–3470

    Article  PubMed  CAS  Google Scholar 

  • Neuroinflammation Working Group (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21: 383–421

    Google Scholar 

  • Paresce DM, Chung H, Maxfield FR (1997) Slow degradation of aggregates of the Alzheimer’s disease amyloid beta-protein by microglial cells. J Biol Chem 29390–29397

    Google Scholar 

  • Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C (1993) Identification of FcyRI, II and III on normal human brain ramified microglia and on micro-glia in senile plaques in Alzheimer’s disease. J Neuroimmunol 48: 71–80

    Google Scholar 

  • Perlmutter LS, Barron E, Chui HC (1990) Morphologic association between microglia senile plaque amyloid in Alzheimer’s disease. Neurosci Lett 119: 32–36

    Article  PubMed  CAS  Google Scholar 

  • Peterson PK, Hu S, Salak-Johnson J, Molitor TW, Chao CC (1997) Differential production of and migratory response to B chemokines by human microglia and astrocytes. J Infect Dis 175: 478–481

    Article  PubMed  CAS  Google Scholar 

  • Raley MJ, Lennartz MR, Loegering DJ (1999) A phagocytic challenge with IgG-coated erythrocytes depresses macrophage respiratory burst and phagocytic function by different mechanisms. J Leukoc Biol 66: 803–806

    PubMed  CAS  Google Scholar 

  • Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid ß peptide as linked phenomena in Alzheimer’s disease. Interntl J Neurochem (in press)

    Google Scholar 

  • Rogers J, Luber-Narod J, Styren Sd, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Cooper NR, Schultz J, McGeer PL, Webster S, Styren SD, Civin WH, Brachova L, Bradt B, Ward P, Lieberburg I (1992) Complement activation by f3-amyloid in Alzheimer’s disease. Proc Nat Acad Sci (USA) 89: 10016–10020

    Article  CAS  Google Scholar 

  • Rozovsky I, Finch CE, Morgan TE (1998) Age-related activation of microglia and astrocytes: In vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging 19: 97–103

    Google Scholar 

  • Schenk D, Borbour R, Dunn W, et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Stoltzner SE, Grenfell TJ, Mori C, Wisniewski KE, Wisniewski TM, Selkoe DJ, Lemere C (2000) Temporal accrual of complement proteins in amyloid plaques in Down’s syndrome with Alzheimer’s disease. Am J Pathol 156: 488–499

    Article  Google Scholar 

  • Sutterwala FS, Noel GJ, Salgame P, Mosser DM (1998) Reversal of proinflammatory responses by ligating the macrophage Fc gamma receptor type I. J Exp Med 188: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Tomozawa Y, Inoue T, Takahashi M, Adachi M, Satoh M (1996) Apoptosis of culturedmicroglia by the deprivation of macrophage colony-stimulating factor. Neurosci Res 25: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Turrin NP, Plata-Salaman CR (2000) Cytokine-cytokine interactions and the brain. Brain Res Bulletin 51: 3–9

    Article  CAS  Google Scholar 

  • Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, Matre R (1994a) Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol 56: 732–740

    PubMed  CAS  Google Scholar 

  • Ulvestad E, Williams K, Matre R, Nyland H, Olivier A, Antel J (1994b) Fc receptors for IgG on cultured human microglia mediate cytotoxicity and phagocytosis of antibody-coated targets. J Neuropathol Exp Neuro 53: 27–36

    Article  CAS  Google Scholar 

  • Veerhuis R, Janssen I, De Groot CJA, Van Muiswinkel FL, Hack CE, Eikelenboom P (1999) Cytokines associated with amyloid plaques in Alzheimer’s disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not Cl-inhibitor. Exp Neurol 160: 289–299

    Article  PubMed  CAS  Google Scholar 

  • Walker DG, Kim SU, McGeer PL (1995) Complement and cytokine gene expression in cultured microglia derived from postmortem human brains. J Neurosci Res 40: 478–493

    Article  PubMed  CAS  Google Scholar 

  • Webster S, Rogers J (1996) Relative efficacies of amyloid (3 peptide binding proteins in A(3 aggregation. J Neurosci Res 46: 58–66

    Article  PubMed  CAS  Google Scholar 

  • Webster S, Bonnell B, Rogers J (1997a) Charge based binding of complement component Clq to the Alzheimer amyloid 13 peptide. Am J Pathol 150: 1531–1536

    PubMed  CAS  Google Scholar 

  • Webster S, Bradt B, Rogers J, Cooper NR (1997b) Aggregation state-dependent activation of the classical complement pathway by the amyloid [3 peptide. J Neurochem 69: 388–398

    Article  PubMed  CAS  Google Scholar 

  • Webster S, Lue L-F, Brachova L, Tenner A, McGeer PL, Walker D, Bradt B, Cooper NR, Rogers J (1997c) Molecular and cellular characterizaiton of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol Aging 18: 415–421

    Google Scholar 

  • Webster SD, Tenner AJ, Poulos TL, Cribbs DH (1999) The mouse Clq Achain sequence alters beta-amyloid-induced complement activation. Neurobiol Aging 20: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Whittemore SR, Sanon HR, Wood PM (1993) Concurrent isolation and characterization of oligodendrocytes, microglia and astrocytes from adult human spinal cord. Int J Dev Neurosci 11: 755–764

    Article  PubMed  CAS  Google Scholar 

  • Williams K, Bar-Or A, Ulvestad E, Olivier A, Antel J, Yong VW (1992) Biology of adult human microglia in culture: comparisons with peripheral blood monocytes and astrocytes. J Neuropathol Exp Neurol 51: 538–549

    Article  PubMed  CAS  Google Scholar 

  • Wujek JR, Dority MD, Frederickson RC, Brunden KR (1996) Deposits of A beta fibrils are not toxic to cortical and hippocampal neurons in vitro. Neurobiol Aging 17: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Xia MQ, Hyman BT (1999) Chemokines/chemokinereceptors in the central nervous system and Alzheimer’s disease. J Neurovirol 5: 32–41

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Roher A, Schmidt AM, Stern DM (1999) Cellular cofactors for amyloid (3-peptide-induced cell stress: moving from cell cultures to in vivo. Am J Pathol 155: 1403–1410

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Roher A, Chaney M, Zlokovic B, Schmidt AM, Stern D (2000) Cellular cofactors potentiating induction of stress and cytotoxicity by amyloid beta-peptide. Biochim Biophys Acta 1502: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Zhu H, Fu J, Yan SF, Roher, Tourtellotte WW, Ragavashisth T, Chen X, Godman GC, Stern D, Schmidt AM (1997) Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expres

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rogers, J. et al. (2002). Elucidating Molecular Mechanisms of Alzheimer’s Disease in Microglial Cultures. In: Kettenmann, H., Burton, G.A., Moenning, U.J. (eds) Neuroinflammation — From Bench to Bedside. Ernst Schering Research Foundation Workshop, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05073-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05073-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05075-0

  • Online ISBN: 978-3-662-05073-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics