Skip to main content

Hierarchical Organization

  • Chapter
From Cells to Societies

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 267 Accesses

Abstract

Hierarchical organization is typical of complex living systems. Hierarchies of two kinds should be distinguished. Evolutionary hierarchies, such as genealogical trees, are memories of a branching process. The degree of kinship represents a natural measure of distance between elements in such trees, leading to the concept of an ultrametric space. Dynamical hierarchies are formed by coexisting structures of different levels that interact to determine the system’s dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Rammal, G. Toulouse, M.A. Virasoro, Rev. Mod. Phys. 58, 765 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  2. H.A. Ceccatto, B.A. Huberman, Physica Scripta 37, 145 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1972 (1975)

    Article  Google Scholar 

  4. N. Metropolis, A.W. Rosenblueth, M.N. Rosenblueth, A.H. Teller, J. Chem. Phys. 6, 1087 (1953)

    Article  ADS  Google Scholar 

  5. V. Dotsenko, An Introduction to the Theory of Spin Glasses and Neural Networks (World Scientific, Singapore 1994)

    MATH  Google Scholar 

  6. K.H. Fischer, J.A. Hertz, Spin Glasses (Cambridge University Press, Cambridge 1991)

    Book  Google Scholar 

  7. S.F. Edwards, P.W. Anderson, J. Phys. F 5, 965 (1975)

    Article  ADS  Google Scholar 

  8. G. Parisi, J. Phys. A 13, 1887 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Parisi, Phys. Rev. Lett. 50, 1946 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Mezard, G. Parisi, M. Virasoro, Spin-Glass Theory and Beyond (World Scientific, Singapore 1987)

    MATH  Google Scholar 

  11. A.P. Young, Phys. Rev. Lett. 51, 1206 (1983)

    Article  ADS  Google Scholar 

  12. R.N. Bhatt, A.P. Young, J. Magn. Magn. Mater. 54–57, 191 (1986)

    Article  ADS  Google Scholar 

  13. S.C. Manrubia, A.S. Mikhailov, Europhys. Lett. 50, 580 (2000)

    Article  ADS  Google Scholar 

  14. S.C. Manrubia. U. Bastolla, A.S. Mikhailov, Eur. Phys. J. B 23, 497 (2001)

    ADS  Google Scholar 

  15. A.N. Kolmogorov, C. R. Acad. Sci. USSR 30, 301 (1941); 32, 16 (1941)

    Google Scholar 

  16. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York 1987)

    MATH  Google Scholar 

  17. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge 1995)

    MATH  Google Scholar 

  18. A.S. Mikhailov, D.H. Zanette, unpublished

    Google Scholar 

  19. J.D. Murray, Mathematical Biology (Springer, Berlin 1989)

    Book  MATH  Google Scholar 

  20. R.J. Britten, E.H. Davidson, Science 165, 349 (1969)

    Article  ADS  Google Scholar 

  21. E. Davidson, R.J. Britten, Science 204, 1052 (1976)

    Article  ADS  Google Scholar 

  22. J. Monod, F. Jacob, Cold Spring Harbor Symp. Quant. Biol. 26, 389 (1961)

    Article  Google Scholar 

  23. B.C. Goodwin, Adv. in Enzyme Regulation 3, 425 (1965)

    Article  Google Scholar 

  24. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell (Garland, New York 1994)

    Google Scholar 

  25. S.A. Kauffman, The Origins of Order — Self-Organization and Selection in Evolution (Oxford University Press, New York 1993)

    Google Scholar 

  26. R.M. May, Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, NJ 1973)

    Google Scholar 

  27. J. Hofbauer, K. Sigmund, Evolutionstheorie und dynamische Systeme — Mathematische Aspekte der Selektion (Paul Parey, Berlin 1984)

    MATH  Google Scholar 

  28. S.A.L.M. Kooijman, M.P. Boer, Dynamics Energy Budgets in Biological Systems: Theory and Applications in Ecotoxicology (Cambridge University Press, Cambridge 1993)

    Google Scholar 

  29. L. Edelstein-Keshet, Mathematical Models in Biology (Random House, New York 1988)

    MATH  Google Scholar 

  30. H.L. Smith, P. Waltman, The Theory of the Chemostat (Cambridge University Press, Cambridge 1994)

    Google Scholar 

  31. D. Ludwig, SIAM J. Appl. Math. 55, 564 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Giampietro, Agriculture, Ecosystems and Environment 65, 201 (1997)

    Article  Google Scholar 

  33. R.U. Ayres, Resources, Environment and Economics: Applications of the Materials/Energy Balance Principle (John Wiley & Sons, New York 1978)

    Google Scholar 

  34. R.U. Ayres, P.M. Weaver, Eco-restructuring: Implications for Sustainable Development (United Nations University Press, Tokyo 1998)

    Google Scholar 

  35. C.S. Holling, “The Resilience of Terrestrial Ecosystems: Local Surprise and Global change”, In Sustainable Development of the Biosphere, eds. W.C. Clark, R.E. Munn (1986)

    Google Scholar 

  36. B.A. Huberman, T. Hogg, “The Behaviour of Computational Ecologies” In The Ecology of Computation, ed. B.A. Huberman (Elsevier, North-Holland 1988) p. 77–115

    Google Scholar 

  37. A.S. Mikhailov, Foundations of Synergetics I. Distributed Active Systems, 2nd revised edn. (Springer, Berlin 1990; 1995)

    Google Scholar 

  38. S. Galluccio, J.-P. Bouchaud, M. Potters, Phvsica A 259, 449 (1998) .

    Article  Google Scholar 

  39. A. Gábor, I. Kondor, Physica A 274, 229 (1999)

    Article  Google Scholar 

  40. R. Axelrod, D.S. Bennett, British J. Political Sci. 23, 211 (1993)

    Article  Google Scholar 

  41. S. Galam, J. Math. Phychol. 30, 426 (1986)

    Article  MATH  Google Scholar 

  42. S. Galam, J. Stat. Phys. 61, 943 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Galam, Physica A 274, 132 (1999)

    Article  ADS  Google Scholar 

  44. R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mikhailov, A.S., Calenbuhr, V. (2002). Hierarchical Organization. In: From Cells to Societies. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05062-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05062-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07574-2

  • Online ISBN: 978-3-662-05062-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics