Methane emissions from wetland soils in Southwest-Germany

  • Michael Sommer
  • Sabine Fiedler


The spatial and temporal variability of methane flux was investigated in six wetland soils in southern Germany from July 1996 to July 1998. The objectives of our study were (i) to test the hypothesis if CH4 emissions vary consistently with differences in groundwater level and geomorphic units, (ii) to demonstrate that there is, on a global scale, substantial CH4 emission from wetland soils in temperate-humid climates. Daily emissions of CH4 in these wetland soils ranged from 0 to 85 mg CH4 m-2d-1 (medians), and cumulative yearly emissions differed by two orders of magnitude (0 to 73 g CH4 m-2). There was a non-linear correlation between CH4 emission and both groundwater level and Eh. Both of the latter variables were very well related to soil morphology and classification. We recommended that soil maps may be used for area calculations of the CH4-fluxes from terrestrial ecosystems.


Groundwater Level Methane Emission Groundwater Table Alluvial Plain Natural Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AG Boden (1994) Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften und Rohstoffe und den Geologischen Landesämtern in der BRD (ed). 47th ednGoogle Scholar
  2. Ambus P, Christensen S (1995) Spatial and seasonal nitrous oxides and methane fluxes in Danish forest-, grassland-, and agroecosystems. J Environ Qual 24: 993–1001CrossRefGoogle Scholar
  3. Aselman I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonal and possible methane emissions. J Atmos Chem 8: 307–358CrossRefGoogle Scholar
  4. Augustin J, Merbach W, Schmidt W, Reining E (1996) Effect of changing temperature and water table on trace gas emission from minerotrophic mires. Angew Bot 70: 45–51Google Scholar
  5. Bartlett KB, Crill PM, Sebacher D, Harriss RC, Wilson J, Melack J (1988) Methane flux from the central Amazonian floodplain. J Geophys Res 93: 1571–1582CrossRefGoogle Scholar
  6. Bartlett KB, Crill PM, Sass RL, Harriss RC, Dise NB (1992) Methane emissions from tundra environmental in the Yukon-Kuskokwim Delta, Alaska. J Geophy Res 97: 16645–16660CrossRefGoogle Scholar
  7. Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26: 261–320CrossRefGoogle Scholar
  8. Bubier JL, Moore TR, Roulet NT (1993) Methane emissions from wetlands in the midboreal region of Northern Ontario, Canada. Ecology 74: 2240–2254CrossRefGoogle Scholar
  9. Burke RA Jr., Barber TR, Sackett WM (1988) Methane flux and stable hydrogen and carbon isotope composition of sedimentary methane from the Florida Everglades. Global Biogeochem Cycles 2: 329–340CrossRefGoogle Scholar
  10. Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae M, Schimel D (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp 39–58Google Scholar
  11. Corre MD, Pennock DJ, van Kessel C, Elliott DK (1999) Estimation of annual nitrous oxide emissions from a transitional grassland-forest region in Saskatchewan, Canada. Biochemistry 44: 29–49Google Scholar
  12. Christensen T (1993) Methane emission from arctic tundra. Biogeochemistry 21: 117–139CrossRefGoogle Scholar
  13. Dise N (1993) Methane emissions from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochem Cycles 7: 123–142CrossRefGoogle Scholar
  14. DWD (1953) Deutscher Wetterdienst. Klimaatlas Baden-Württemberg. Bad KissingenGoogle Scholar
  15. Fechner EJ, Hemond HF (1992) Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland. Global Biogeochem Cycles 6: 33–44CrossRefGoogle Scholar
  16. Fiedler S (1997) In-situ-Langzeitmessungen des Redoxpotentials in hydromorphen Böden einer Endmoränenlandschaft im württembergischen Alpenvorland. PhD thesis, University of Hohenheim, Hohenheimer Bodenkdl Hefte 42Google Scholar
  17. Fiedler S, Adam K, Sommer M, Stahr K (1998) CO2- und CH4-Emissionen aus Böden entlang eines Feuchtegradienten im südwestdeutschen Alpenvorland. Mittigen Dtschen Bodenkundl Ges 88: 15–18Google Scholar
  18. Fiedler S, Sommer M (2000) Methane emissions, groundwater table and redox potentials along a gradient of redoximorphic soils in a temperate-humid climate. Global Biogeochem Cycles 14 (4): 1081–1093CrossRefGoogle Scholar
  19. Flessa H, Wild U, Klemisch M, Pfadenhauer J (1997) C-und N-Stofiilusse auf Torfstichsimulationsflächen im Donaumoos. Z f Kulturt u Landentwicklg 38: 11–17Google Scholar
  20. Frolking S, Crill P (1994) Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: Measurement and modelling. Global Biogeochem Cycles 8: 385–397CrossRefGoogle Scholar
  21. Giani L, Dittrich K, Mansfeld-Hartmann A, Peters G (1996) Methanogenesis in saltmarsh soils of the North Sea Coast of Germany. European J Soil Sci 47: 175–182CrossRefGoogle Scholar
  22. Groffman PM, Tiedje JM, Robertson GP, Christensen S (1988) Denitrification at different temporal and geographical scales: Proximal and distal controls. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford. UK, pp 174–192Google Scholar
  23. Kleber M (1997) Carbon exchange in humid grassland soils. PhD thesis, University of Hohenheim, Hohenheimer Bodenkdl Hefte 41Google Scholar
  24. Lessard R, Rochette P, Topp E, Pattey E, Desjardins R, Beaumont G (1994) Methane and carbon fluxes from poorly drained adjacent cultivated and forest sites. Can J Soil Sei 74: 139–146CrossRefGoogle Scholar
  25. Liblik LK, Moore TR, Bubier JL, Robinson SD (1997) Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada. Global Biogeochem Cycles 11:485–494CrossRefGoogle Scholar
  26. Merbach W, Augustin J, Kalettka T, Jacob HJ (1996) Nitrous Oxide and methane emissions from riparian area of ponded depressions of Northeast Germany. Angew Bot 70: 134–136Google Scholar
  27. Moore TR, Roulet NT, Knowles R (1990) Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochem Cycles 4: 29–46CrossRefGoogle Scholar
  28. Moore TR, Heyes A, Roulet NT (1994) Methane emission from wetlands, southern Hudson Bay lowland. J Geophy Res 99: 1455–1467CrossRefGoogle Scholar
  29. Moosavi SC, Crill PM, Pullmann ER, Funk DW, Peterson KM (1996) Controls on CH4 flux from an Alaskan boreal wetland. Global Biogeochem Cycles 10: 287–296CrossRefGoogle Scholar
  30. Miiller-Thomsen U, Pfisterer U, Blume H-P (1997) Steuernde Faktoren der Gasfreisetzung von CH4 und N2O in Salzwiese und Watt des Deichvorlandes der schleswig-holsteinschen Nordseeküste. Mittigen Dtschen Bodenkundl Ges 85: 973–976Google Scholar
  31. Neue H-U, Sass RL (1994) Trace emissions from rice fields. Environmental Science Res 48: 119–147Google Scholar
  32. Pfeiffer E-M (1994) Methane fluxes in natural wetlands (marsh and moor) in Northern Germany. Curr Topics in Wetland Biogeochem 1: 36–47Google Scholar
  33. Pfeiffer E-M (1998) Methanfreisetzung aus hydromorphen Böden verschiedener naturnaher und genutzter Feuchtgebiete (Marsch, Moor, Tundra, Reisanbau). Hamburger Bodenkdl Arb 37Google Scholar
  34. Rolston DE (1986) Gas flux. In: Klute A (ed) Methods of soil analysis, pp 1103–1119Google Scholar
  35. Roulet NT, R Ash, TR Moore (1992) Low boreal wetlands as a source of atmospheric methane. J Geophy Res 97: 3739–3749CrossRefGoogle Scholar
  36. Roulet NT, Jano A, Kelly CA, Klinger LF, Moore TR, Protz R, Ritter JA, Rouse WR (1994) Role of the Hudson Bay lowland as a source of atmospheric methane. J Geophy Res 99: 1439–1454CrossRefGoogle Scholar
  37. Sebacher DI, Harriss RC, Bartlett K, Sebacher SM, Grice SS (1986) Atmospheric methane sources: Alaska tundra bogs, an alpine fen, and subarctic boreal marsh. Tellus 38: 1–10Google Scholar
  38. Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. J Ecology 84: 239–246CrossRefGoogle Scholar
  39. Soil Survey Staff (1998) Keys of soil taxonomy, 8th edn, Scholar
  40. Svensson BH, Rosswall T (1984) In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43: 341–350CrossRefGoogle Scholar
  41. Valentine DW, Holland EA, Schimel DS (1994) Ecosystem and physiological controls over methane production in northern wetlands. J Geophy Res 99: 1563–15741CrossRefGoogle Scholar
  42. Vourlitis GL, Oechel WC (1997) The role of northern ecosystems in the global methane budget. In: Oechel WC (ed) Global change and arctic terrestrial ecosystems. Ecological Studies 124: 267–289CrossRefGoogle Scholar
  43. Waddington JM, Roulet NT (1996) Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Global Biogeochem Cycles 10: 233–245CrossRefGoogle Scholar
  44. Whalen SC, Reeburgh WS (1988) A methane flux time series for tundra environments. Global Biogeochem Cycles 2: 399–409CrossRefGoogle Scholar
  45. Whalen SC, Reeburgh WS (1992) Interannual variations in tundra methane emission: a 4-year time series at fixed sites. Global Biogeochem Cycles 6: 139–159CrossRefGoogle Scholar
  46. Whalen SC, Reeburgh WS, Reimers CE (1996) Control of tundra methane emission by microbial oxidation. In: Reynolds JF, Tenhunen JD (eds) Landscape function and disturbance in arctic tundra. Ecological Studies 120, pp 257–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michael Sommer
  • Sabine Fiedler

There are no affiliations available

Personalised recommendations