Advertisement

Sequence Analysis of the Lotus japonicus Genome

  • S. Sato
  • E. Asamizu
  • S. Tabata
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 52)

Abstract

One of the most epoch-making accomplishments in plant genetics in the 20th century was the completion of genome sequencing of Arabidopsis thaliana (The Arabidopsis-Genome Initiative 2000). As a consequence, an enormous amount of information on gene structures and their functions have been and are still being accumulated in this organism. Nevertheless, other plant species have their own characteristics and advantages for the study of individual biological phenomena. Further, comparison of knowledge from A. thaliana and that from other plant species is a promising approach for obtaining universal knowledge on the genetic systems in all plants.

Keywords

Chloroplast Genome Bacterial Artificial Chromosome Library Lotus Japonicus Average Insert Size Model Legume Lotus Japonicus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Gish W, Miller W, Myers EW Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Asamizu E, Nakamura Y, Sato S, Tabata S (2000a) Generation of 7137 non-redundant expressed sequence tags from a legume, Lotus japonicus. DNA Res 7:127–130PubMedCrossRefGoogle Scholar
  3. Asamizu E, Nakamura Y, Sato S, Tabata S (2000b) A large scale analysis of cDNA in Arabidopsis thaliana: generation of 12,028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries. DNA Res 7:175–180PubMedCrossRefGoogle Scholar
  4. Bonaldo MF, Lennon G, Soares MB (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res 6:791–806PubMedCrossRefGoogle Scholar
  5. Brick DJ, Brumlik MJ, Buckley T, Cao JX, Davies PC, Misra S, Tranbarger TJ, Upton C (1995) A new family of lipolytic plant enzymes with members in rice, Arabidopsis and maize. FEBS Lett 377:475–480PubMedCrossRefGoogle Scholar
  6. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94PubMedCrossRefGoogle Scholar
  7. Cooke R, Raynal M, Laudié M, Grellet F, Delseny M, Morris PC, Guerrier D, Giraudat J, Quigley F, Clabault G, Li YF, Mache R, Krivitzky M, Gy IJ, Kreis M, Lecharny A, Parmentier Y, Marbach J, Fleck J, Clément B, Philipps G, Hervé C, Bardet C, Tremousaygue D, Lescure B, Lacomme C, Roby D, Jourjon MF, Chabrier P, Charpenteau JL, Desprez T, Amselem J, Chiapello H, Höfte H (1996) Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant J 9:101–124PubMedCrossRefGoogle Scholar
  8. Covitz PA, Smith LS, Long SR (1998) Expressed sequence tags from a root-hair-enriched Med-icago truncatula cDNA library. Plant Physiol 117:1325–1332PubMedCrossRefGoogle Scholar
  9. Doyle JJ, Doyle JL, Ballenger JA, Palmer JD (1996) The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Mol Phylogenet Evol 5:429–438PubMedCrossRefGoogle Scholar
  10. Endo M, Kokubun T, Takahata Y, Higashitani A, Tabata S, Watanabe M (2000) Analysis of expressed sequence tags of flower buds in Lotus japonicus. DNA Res 7:213–216PubMedCrossRefGoogle Scholar
  11. Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD (1991) Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10:3073–3078PubMedGoogle Scholar
  12. Gyorgyey J, Vaubert D, Jimenez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of Medicago truncatula nodule expressed sequence tags. Mol Plant Microbe Interact 13:62–71PubMedCrossRefGoogle Scholar
  13. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496Google Scholar
  14. Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Taketa M, Hayashi M, Pedrosa A, Onda R, Imaizumi-Anraku H, Bachmair A, Sandal N, Stougaard J, Murooka Y, Tabata S, Kawasaki S, Kawaguchi M, Harada K (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310PubMedCrossRefGoogle Scholar
  15. Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452PubMedCrossRefGoogle Scholar
  16. Höfte H, Desprez T, Amselem J, Chiapello H, Caboche M, Moisan A, Jourjon MF, Charpenteau JL, Berthomieu P, Guerrier D, Giraudat J, Quigley F, Thomas F, Yu DY, Mache R, Raynal M, Cooke R, Grellet F, Delseny M, Parmentier Y, Marcillac G, Gigot C, Fleck J, Philipps G, Axelos, M, Bardet C, Tremousaygue D, Leacure B (1993) An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J 4:1051–1061PubMedCrossRefGoogle Scholar
  17. Imaizumi-Anraku H, Kawaguchi M, Koiwa H, Akao S, Syono K (1997) Two ineffective-nodulat-ing mutants of Lotus japonicus — different phenotypes caused by the blockage of endocytotic bacterial release and nodule mutation. Plant Cell Physiol 38:871–881CrossRefGoogle Scholar
  18. Ito M, Miyamoto J, Mori Y, Fujimoto S, Uchiumi T, Abe M, Suzuki A, Tabata S, Fukui K (2000) Genome and chromosome dimensions of Lotus japonicus. J Plant Res 113:435–442CrossRefGoogle Scholar
  19. Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume Lotus japonicus. DNA Res 7:323–330PubMedCrossRefGoogle Scholar
  20. Kawaguchi M (2000) Lotus japonicus “Miyakojima” MG-20: an early flowering accession suitable for indoor handling. J Plant Res 113:507–509CrossRefGoogle Scholar
  21. Kawasaki S, Murakami Y (2000) Genome analysis of Lotus japonicus. J Plant Res 113:497–506CrossRefGoogle Scholar
  22. Liu Y-G, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540PubMedCrossRefGoogle Scholar
  23. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedGoogle Scholar
  24. Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Rautoiu SE, Iaccarino M, Gresshoff PM (1999) T-DNA tagging of nodulation- and root-related genes in Lotus japonicus: expression patterns and potential for promoter trapping and insertional mutagenesis. Mol Plant Microbe Interact 12:275–284CrossRefGoogle Scholar
  25. Men AE, Meksem K, Kassem MA, Lohar D, Stiller J, Lightfoot D, Gresshoff PM (2000) A bacterial artificial chromosome (BAC) library of Lotus japonicus constructed in an Agrobac-terium-transformable vector V41. Abstr Mol Genet Model Legumes John Innes Centre:97Google Scholar
  26. Milligan BG, Hampton JN, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol Biol Evol 6:355–368PubMedGoogle Scholar
  27. Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, Mcintosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M (1994) Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106:1241–1255PubMedCrossRefGoogle Scholar
  28. Sandal N, Krusell L, Ketelsen T, Madsen LH, Stougaard J (2000) Mapping and map based cloning in Lotus japonicus. Abstr Mol Genet Model Legumes John Innes Centre:18Google Scholar
  29. Sandal N, Krusell L, Radutoiu S, Olbryt M, Pedrosa A, Stracke S, Sato S, Kato T, Tabata S, Parniske M, Bachmair A, Ketelsen T, Stougaard J (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161:1673–1683PubMedGoogle Scholar
  30. Sato S, Kotani H, Nakamura Y, Kaneko T, Asamizu E, Fukami M, Miyajima N, Tabata S (1997) Structural analysis of Arabidopsis thaliana chromosome 5.I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned PI clones. DNA Res 4:215–230PubMedCrossRefGoogle Scholar
  31. Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290PubMedCrossRefGoogle Scholar
  32. Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S (2001) Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 Mb regions of the genome. DNA Res 8:311–318PubMedCrossRefGoogle Scholar
  33. Schauser L, Handberg K, Sandal N, Stiller J, Thykjflr T, Pajuelo E, Nielsen A, Stougaard J (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 4:414–423Google Scholar
  34. Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195PubMedCrossRefGoogle Scholar
  35. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  36. Spielmann A, Roux E, von Allmen JM, Stutz E (1988) The soybean chloroplast genome: complete sequence of the rpsl9 gene, including flanking parts containing exon 2 of rpl2 (upstream), but rpl22 (downstream). Nucleic Acids Res 16:1199PubMedCrossRefGoogle Scholar
  37. Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, Dazzo FB, de Bruijin FJ (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 11:684–697CrossRefGoogle Scholar
  38. The Arabidopsis-Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  39. Uberbacher EC, Mural RJ (1991) Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci USA 88:11261–11265PubMedCrossRefGoogle Scholar
  40. Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144PubMedCrossRefGoogle Scholar
  41. Webb KJ, Skt L, Nicholson MN, Jorgensen B, Mizen S (2000) Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus. Mol Plant Microbe Interact 13:606–616PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. Sato
    • 1
  • E. Asamizu
    • 1
  • S. Tabata
    • 1
  1. 1.Kazusa DNA Research InstituteKisarazu, Chiba 292Japan

Personalised recommendations