Genome Analysis of a Flowering Plant, Arabidopsis thaliana

  • T. Kato
  • E. Asamizu
  • Y. Nakamura
  • S. Tabata
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 52)


Advances in DNA cloning and sequencing technologies have allowed the performance of comprehensive analysis of genetic information in various flowering plants of biological and agronomical importance. Among them, Arabidopsis thaliana, a member of the Brassica family, was chosen as a plant most suitable for genomic sequencing (Goodman et al. 1995; Meinke et al. 1998), because the estimated genome size of 125–130Mb is the smallest among known higher plants and the content of repetitive sequences was assumed to be low. Its short life cycle (average 60 days) and prodigious seed production are the characteristics which make this small plant an ideal model organism in which to analyze metabolism, development, stress responses, and disease resistance in all the flowering plants


Arabidopsis Thaliana Bacterial Artificial Chromosome Flowering Plant Gene Trap Enhancer Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Asamizu E, Nakamura Y, Sato S, Tabata S (2000) A large scale analysis of cDNA in Arabidopsis thaliana: generation of 12,028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries. DNA Res 7:175–180PubMedCrossRefGoogle Scholar
  3. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316:1194–1199Google Scholar
  4. Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fischer R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Koreeda S, Lee BH, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song CP, Tanaka Y, Wang H, Zhu JK (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311CrossRefGoogle Scholar
  5. Brendel V, Kleffe J (1998) Prediction of locally optimal splice sites in plant pre-mRNA with applications to gene identification in Arabidopsis thaliana genomic DNA. Nucleic Acids Res 26:4748–4757PubMedCrossRefGoogle Scholar
  6. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94PubMedCrossRefGoogle Scholar
  7. Camilleri C, Lafleuriel J, Macadre C, Varoquaux F, Parmentier Y, Picard G, Caboche M, Bouchez D (1998) A YAC contig map of Arabidopsis thaliana chromosome 3. Plant J 14:633–642PubMedCrossRefGoogle Scholar
  8. Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T (1999) Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J 17:699–707PubMedCrossRefGoogle Scholar
  9. Choi S, Creelman RA, Mullet JE, Wing RA (1995) Construction and characterization of a bacterial artificial chromosome library of Arabidopsis thaliana. Weeds World 2:17–20Google Scholar
  10. Chuang C-F, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990PubMedCrossRefGoogle Scholar
  11. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Cornai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484PubMedCrossRefGoogle Scholar
  12. Cooke R, Raynal M, Laudié M, Grellet F, Delseny M, Morris PC, Guerrier D, Giraudat J, Quigley F, Clabault G, Li YF, Mache R, Krivitzky M, Gy IJ, Kreis M, Lecharny A, Parmentier Y, Marbach J, Fleck J, Clément B, Philipps G, Hervé C, Bardet C, Tremousaygue D, Lescure B, Lacomme C, Roby D, Jourjon MF, Chabrier P, Charpenteau JL, Desprez T, Amselem J, Chiapello H, Höfte H (1996) Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant J 9:101–124PubMedCrossRefGoogle Scholar
  13. Creusot F, Fouilloux E, Dron M, Lafleuriel J, Picard G, Billault A, Paslier DL, Cohen D, Chaboute M-E, Durr A, Fleck J, Gigot C, Camilleri C, Bellini C, Caboche M, Bouchez D (1995) The CIC library: a large insert YAC library for genome mapping in Arabidopsis thaliana. Plant J 8:763–770PubMedCrossRefGoogle Scholar
  14. Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis tran-scriptome by oxidative stress. Plant Physiol 127:159–172PubMedCrossRefGoogle Scholar
  15. Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82CrossRefGoogle Scholar
  16. Frishman D, Albermann K, Hani J, Heumann K, Metanomski A, Zollner A, Mewes HW (2001) Functional and structural genomics using PEDANT. Bioinformatics 17:44–57PubMedCrossRefGoogle Scholar
  17. Galbiati M, Moreno MA, Nadzan G, Zourelidou M, Dellaporta SL (2000) Large-scale T-DNA mutagenesis in Arabidopsis for functional genomic analysis. Funct Integr Genomics 1:25–34PubMedGoogle Scholar
  18. Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848PubMedCrossRefGoogle Scholar
  19. Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581PubMedCrossRefGoogle Scholar
  20. Goodman HM, Ecker JR, Dean C (1995) The genome of Arabidopsis thaliana. Proc Natl Acad Sci USA 92:10831–10835PubMedCrossRefGoogle Scholar
  21. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517PubMedGoogle Scholar
  22. Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedCrossRefGoogle Scholar
  23. Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452PubMedCrossRefGoogle Scholar
  24. Höfte H, Desprez T, Amselem J, Chiapello H, Caboche M, Moisan A, Jourjon MF, Charpenteau JL, Berthomieu P, Guerrier D, Giraudat J, Quigley F, Thomas F, Yu DY, Mache R, Raynal M, Cooke R, Grellet F, Delseny M, Parmentier Y, Marcillac G, Gigot C, Fleck J, Philipps G, Axelos M, Bardet C, Tremousaygue D, Leacure B (1993) An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J 4:1051–1061PubMedCrossRefGoogle Scholar
  25. Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985PubMedCrossRefGoogle Scholar
  26. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965PubMedCrossRefGoogle Scholar
  27. Kotani H, Sato S, Fukami M, Hosouchi T, Nakazaki N, Okumura S, Wada T, Liu Y-G, Shibata D, Tabata S (1997) A fine physical map of Arabidopsis thaliana chromosome 5: construction of a sequence-ready contig map. DNA Res 4:371–378PubMedCrossRefGoogle Scholar
  28. Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127:1694–1710PubMedCrossRefGoogle Scholar
  29. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290PubMedGoogle Scholar
  30. Liu Y-G, Mitsukawa N, Vazquez-Tello A, Whittier RF (1995) Generation of a high-quality P1 library of Arabidopsis suitable for chromosome walking. Plant J 7:351–358CrossRefGoogle Scholar
  31. Liu Y-G, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540PubMedCrossRefGoogle Scholar
  32. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedGoogle Scholar
  33. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathway. Plant Cell 13:2589–2607PubMedGoogle Scholar
  34. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  35. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet 26:403–410PubMedCrossRefGoogle Scholar
  36. Mayfield JA, Fiebig A, Johnstone SE, Preuss D (2001) Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292:2482–2485PubMedCrossRefGoogle Scholar
  37. McCallum CM, Cornai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442PubMedCrossRefGoogle Scholar
  38. Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282:662–682PubMedCrossRefGoogle Scholar
  39. Meissner RC, Jin H, Cominelli E, Denekamp M, Fuertes A, Greco R, Kranz HD, Penfield S, Petroni K, Urzainqui A, Martin C, Paz-Ares J, Smeekens S, Tonelli C, Weisshaar B, Baumann E, Klimyuk V, Marillonnet S, Patel K, Speulman E, Tissier AF, Bouchez D, Jones JJD, Pereira A, Wisman E, Bevan M (1999) Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell 11:1827–1840PubMedGoogle Scholar
  40. Millar AH, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127:1711–1727PubMedCrossRefGoogle Scholar
  41. Mozo T, Fischer S, Shizuya H, Altmann T (1998) Construction and characterization of IGF Arabidopsis BAC library. Mol Gen Genet 258:562–570PubMedCrossRefGoogle Scholar
  42. Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, Mcintosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C (1994) Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106:1241–1255PubMedCrossRefGoogle Scholar
  43. Parinov S, Sevugan M, Ye D, Yang W-C, Kumaran M, Sundaresan V (1999) Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270PubMedGoogle Scholar
  44. Perez-Amador MA, Lidder P, Johnson MA, Landgraf J, Wisman E, Green PJ (2001) New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis. Plant Cell 13:2703–2717PubMedGoogle Scholar
  45. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120PubMedCrossRefGoogle Scholar
  46. Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J 15:821–833PubMedCrossRefGoogle Scholar
  47. Santoni V, Rouquie D, Doumas P, Mansion M, Boutry M, Degand H, Dupree P, Packman L, Sherrier J, Prime T, Bauw G, Posada E, Rouze P, Dehais P, Sahnoun I, Barlier I, Rossignol M (1998) Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant J 16:633–641PubMedCrossRefGoogle Scholar
  48. Sato S, Kotani H, Hayashi R, Liu Y-G, Shibata D, Tabata S (1998) A physical map of Arabidopsis thaliana chromosome 3 represented by two contigs of CIC YAC, PI, TAC and BAC clones. DNA Res 5:163–168PubMedCrossRefGoogle Scholar
  49. Sato S, Kaneko T, Kotani H, Hayashi R, Liu Y-G, Shibata D, Tabata S (1999) A sequence-ready contig map of the top arm of Arabidopsis thaliana chromosome 3. DNA Res 6:117–121PubMedCrossRefGoogle Scholar
  50. Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123PubMedGoogle Scholar
  51. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidop sis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660PubMedCrossRefGoogle Scholar
  52. Schmidt R, West J, Cnops G, Love K, Balestrazzi A, Dean C (1996) Detailed description of four YAC contigs representing 17 Mb of chromosome 4 of Arabidopsis thaliana ecotype Columbia. Plant J 9:755–765PubMedCrossRefGoogle Scholar
  53. Schmidt R, Love K, West J, Lenehan Z, Dean C (1997) Description of 31 YAC contigs spanning the majority of Arabidopsis thaliana chromosome 5. Plant J 11:563–572PubMedCrossRefGoogle Scholar
  54. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72PubMedGoogle Scholar
  55. Speulman E, Metz PLJ, van Arkel G, te Lintel Hekkert B, Stiekema WJ, Pereira A (1999) A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11:1853–1866PubMedGoogle Scholar
  56. Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020PubMedGoogle Scholar
  57. Springer PS, McCombie WR, Sundaresan V, Martienssen RA (1995) Gene trap tagging of PROLIFERA, an essential MCM2–3–5-like gene in Arabidopsis. Science 268:877–880PubMedCrossRefGoogle Scholar
  58. Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap trans-posable elements. Genes Dev 9:1797–1810PubMedCrossRefGoogle Scholar
  59. Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S (2000) The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol 124:1465–1467PubMedCrossRefGoogle Scholar
  60. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  61. Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127:1030–1043PubMedCrossRefGoogle Scholar
  62. Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JDG (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852PubMedGoogle Scholar
  63. Topping JF, Agyeman F, Henricot B, Lindsey K (1994) Identification of molecular markers of embryogenesis in Arabidopsis thaliana by promoter trapping. Plant J 5:895–903PubMedCrossRefGoogle Scholar
  64. Uberbacher EC, Mural RJ (1991) Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci USA 88:11261–11265PubMedCrossRefGoogle Scholar
  65. Vener AV, Harms A, Sussman MR, Vierstra RD (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 276:6959–6966PubMedCrossRefGoogle Scholar
  66. Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1510PubMedGoogle Scholar
  67. Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1014PubMedCrossRefGoogle Scholar
  68. Wesley SV, Helliwell CA, Smith NA, Wang M-B, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590PubMedCrossRefGoogle Scholar
  69. Winkler RG, Frank MR, Galbraith DW, Feyereisen R, Feldmann KA (1998) Systematic reverse genetics of Transfer-DNA-tagged lines of Arabidopsis. Isolation of mutations in the cytochrome P450 gene superfamily. Plant Physiol 118:743–750PubMedCrossRefGoogle Scholar
  70. Wisman E, Ohlrogge J (2000) Arabidopsis microarray service facilities. Plant Physiol 124: 1468–1471Google Scholar
  71. Zachgo EA, Wang ML, Dewdney J, Bouchez D, Camilleri C, Belmonte S, Huang L, Dolan M, Goodman HM (1996) A physical map of Chromosome 2 of Arabidopsis thaliana. Genome Res 6:19–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • T. Kato
    • 1
  • E. Asamizu
    • 1
  • Y. Nakamura
    • 1
  • S. Tabata
    • 1
  1. 1.Kazusa DNA Research InstituteKisarazu, ChibaJapan

Personalised recommendations