Advertisement

Mapping the Chickpea (Cicer arietinum L.) Genome: Localization of Fungal Resistance Genes in Interspecific Crosses

  • P. Winter
  • S. Rakshit
  • M. Baum
  • G. Kahl
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 52)

Abstract

Chickpea (Cicer arietinum L.) is a grain legume of world importance (average annual production approximately 8,500,0001) ranking third after pea and dry bean on the world market (Duke 1981; FAOSTAT 2000). Major production areas are the Indian subcontinent, West Asia and North Africa (WANA), European countries surrounding the Mediterranean basin, and Latin America. In these regions, chickpea belongs to the traditional diet of the people, and serves as animal fodder as well. In recent years chickpea production in the USA, Australia, and Canada has also increased and provides a growing surplus for export. In all these areas, chickpea is an important component of rain-fed, cereal-based intercropping systems.

Keywords

Fusarium Wilt Interspecific Cross Bulk Segregant Analysis Ascochyta Blight Cicer Arietinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  2. Barz W, Bless W, Gunia W, Höhl B, Mackenbrock U, Meyer D, Tenhaken R, Vogelsang R(1993) Mechanism of resistance to fungal pathogens in cool-season food legumes. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-season food legumes. Wiley, New York, pp 193–210Google Scholar
  3. Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73PubMedCrossRefGoogle Scholar
  4. Beckmann JS, Soller M (1990) Towards a unified approach to genetic mapping of eucaryotes based on sequenced tagged microsatellite sites. Bio/Technology 8:930–932PubMedCrossRefGoogle Scholar
  5. Blair MW, McCouch SR (1997) Microsatellite and sequence-tagged site markers diagnostic for the rice bacterial leaf blight resistance gene Xa-5. Theor Appl Genet 95:174–184CrossRefGoogle Scholar
  6. Burr B, Burr FA, Thompson KH, Albertsen MC, Stuber CW (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526PubMedGoogle Scholar
  7. Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting: a strategy for genome analysis. Plant Mol Biol Rep 9:292–305CrossRefGoogle Scholar
  8. Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice. Theor Appl Genet 95:553–567CrossRefGoogle Scholar
  9. Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AI, Kaya N, VanThoai TT, Lohnes DG, Chung J, Specht J (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:211–217CrossRefGoogle Scholar
  10. Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial infection in plants. Annu Rev Plant Pathol Plant Mol Biol 41:339–367CrossRefGoogle Scholar
  11. Duke JA(1981) Handbook of legumes of world economic importance. Plenum Press, New York FAOSTAT (2000) http.//apps.fao.org/CrossRefGoogle Scholar
  12. Gupta M, Chyi Y-S, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionary diverse genomes using single primers of simple sequence repeats. Theor Appl Genet 89:998–1006CrossRefGoogle Scholar
  13. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  14. Hammond-Kosack KE, Jones JJ (1997) Plant disease resistance genes. Annu Rev Plant Phys Plant Mol Biol 48:575–607CrossRefGoogle Scholar
  15. Höhl B, Pfautsch M, Barz W (1990) Histology of disease development in resistant and susceptible cultivars of chickpea (Cicer arietinum L.) inoculated with spores of Ascochyta rabiei. J Phytopathol 129:31–45CrossRefGoogle Scholar
  16. Hiittel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217Google Scholar
  17. Hutcheson SW (1998) Current concepts of active defense in plants. Annu Rev Phytopathol 36:59–90PubMedCrossRefGoogle Scholar
  18. Jiminéz-Diaz RM, Crino P, Halila MH, Masconi C, Trapero-Casas AT(1993) Screening for resistance to fusarium wilt and ascochyta blight in chickpea. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-season food legumes. Wiley, New York, pp 77–95Google Scholar
  19. Kaiser WJ (1992) Epidemiology of Ascochyta rabiei. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-season food legumes. Wiley, New York, pp 117–134Google Scholar
  20. Kaiser WJ (1997) Inter- and intranational spread of Ascochyta pathogens of chickpea, faba bean, and lentil. Can J Plant Pathol 19:25–224CrossRefGoogle Scholar
  21. Kazan K, Muehlbauer FJ, Weeden NF, Ladizinsky G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86: 417–426CrossRefGoogle Scholar
  22. Kiinzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412Google Scholar
  23. Lamb CJ, Lawton MA, Drou M, Dixon RA (1989) Signals and transduction mechanism for activation of plant defences against microbial attack. Cell 56:215–224PubMedCrossRefGoogle Scholar
  24. Lander ES, Green P, Abrahamson J, Barlow A, Daly J, Lincoln SE, Newsburg L (1987) MAP-MAKER: an interactive computer package for constructing primary genetic linkage maps of experimental populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  25. Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–1603PubMedCrossRefGoogle Scholar
  26. Mansfield DC, Brown AF, Green DK, Carothers AD, Morris SW, Evans HJ, Wright AF (1994) Automation of genetic linkage analysis using fluorescent microsatellite markers. Genomics 24:225–233PubMedCrossRefGoogle Scholar
  27. Mayer MS, Tullu A, Simon CJ, Kumar J, Kaiser WJ, Kraft JM, Muehlbauer FJ (1997) Development of a DNA marker for Fusarium wilt resistance in chickpea. Crop Sci 37:1625–1629CrossRefGoogle Scholar
  28. Michaels SD, John MC, Amasino RM (1994) Removal of polysaccharides from plant DNA by ethanol precipitation. Bio/Techniques 17:274–276Google Scholar
  29. Michelmore R (1996) Flood warning—resistance genes unleashed. Nat Genet 14:376–378PubMedCrossRefGoogle Scholar
  30. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  31. Narvel JM, Chu W-C, Fehr WR, Cregan PB, Shoemaker RC (2000) Development of multiple sets of simple sequence repeat DNA markers covering the soybean genome. Mol Breed 6:175–183CrossRefGoogle Scholar
  32. Otte O, Barz W (1996) The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta 200:238–246CrossRefGoogle Scholar
  33. Paran I, Goldmann I, Tanksley SD, Zamir D(1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548CrossRefGoogle Scholar
  34. Paterson A, Lander E, Hewitt JD, Peterson S, Lincoln SE,Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedCrossRefGoogle Scholar
  35. Ratnaparkhe MB, Santra DK, Tullu A, Muehlbauer FJ (1998) Inheritance of inter-simple-sequence polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor Appl Genet 96:348–353CrossRefGoogle Scholar
  36. Reddy MV, Kabbabeh S(1985). Pathogenic variability in Ascochyta rabiei (Pass) lab in Syria and Lebanon. Phytopathol Mediterr 24:265–266Google Scholar
  37. Robinson RA (1976) Plant pathosystems. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  38. Santra DK, Tekeoglu M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to Ascochyta blight. Crop Sci 40:12606–12612CrossRefGoogle Scholar
  39. Sharma PC, Winter P, Bunger T, Huttel B, Weigand F, Weising K, Kahl G (1995a) Abundance and polymorphism of di-, tri- and tetranucleotide tandem repeats in chickpea (Cicer arietinum L.). Theor Appl Genet 90:90–96CrossRefGoogle Scholar
  40. Sharma PC, Huttel B, Winter P, Kahl G, Gardner RC, Weising K (1995b) The potential of microsatellites for hybridization- and PCR-based fingerprinting of chickpea (Cicer arietinum L.) and related species. Electrophoresis 16:1755–1761PubMedCrossRefGoogle Scholar
  41. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119CrossRefGoogle Scholar
  42. Srivastava SK, Singh SN, Khare MN (1984) Assessment of yield losses in some promising gram cultivars due to fusarium wilt. Indian J Plant Prot 12:125–126Google Scholar
  43. Su X-Z, Wu Y, Sifri C D, Wellems TE (1996) Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res 24:1574–1475PubMedCrossRefGoogle Scholar
  44. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233PubMedCrossRefGoogle Scholar
  45. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  46. Tanksley SD, Ganal MW, Price JP, de Vincente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni H, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Patterson AH, Pineda O, Röder M, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  47. Tekeoglu M, Santra DK, Kaiser WJ, Muehlbauer FJ (2000) Ascochyta blight resistance inheritance in three chickpea recombinant inbred lines. Crop Sci 40:1215–1256Google Scholar
  48. Tullu A(1996) Genetics of fusarium wilt resistance in chickpea. PhD Thesis, Crop and Soil Sciences Department, Washington State University, Pullman, WA, USAGoogle Scholar
  49. Udupa SM, Baum M (2001) High mutation rates and mutational bias at (TAA)n microsatellite loci in chickpea (Cicer arietinum L.). Mol Gen Genomics 265:1097–1103CrossRefGoogle Scholar
  50. Udupa SM, Weigand F, Saxena MC, Kahl G (1998). Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea. Theor Appl Genet 97:299–307CrossRefGoogle Scholar
  51. Vogel JM, Scolnik PA (1997) Direct amplification from microsatellites: detection of simple-sequence repeat-based polymorphism without cloning. In: Caetano-Anollés G, Gresshoff PM (eds) DNA markers: protocols, applications and overviews. Wiley, New York, pp 133–150Google Scholar
  52. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hoernes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  53. Wang G, Mackill DJ, Bonman MJ, McCouch SR, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durable resistant rice cultivar. Genetics 136:1421–1434PubMedGoogle Scholar
  54. Weeden NF, Ambrose M, Swiecicki W (1993) Pisum sativum, pea. In: O’Brian SJ (ed) Genetic maps6th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 624–634Google Scholar
  55. Weising K, Nybom H, Wolff K, Meyer W (1995) DNA fingerprinting in plants and fungi. CRC Press, Boca RatonGoogle Scholar
  56. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  57. Winter P, Kahl G (1995) Molecular marker technologies for crop improvement. World J Microbiol Biotechnol 11:449–460CrossRefGoogle Scholar
  58. Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L) genome. Mol Gen Genet 262:90–101PubMedCrossRefGoogle Scholar
  59. Winter P, Benko-Iseppon A-M, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C reticulatum cross: Localization of resistance genes for Fusarium races 4 and 5. Theor Appl Genet 101:1155–1163CrossRefGoogle Scholar
  60. Winter P, Staginnus C, Sharma PC, Kahl G(2001a) Organisation and genetic mapping of the chickpea genome. In: Jaiwal PK, Singh RP (eds) Biotechnology for the improvement in legumes. Kluwer, Dordrecht, pp 285–360Google Scholar
  61. Winter P, Hüttel B, Weising K, Kahl G (2001b) Microsatellites and molecular breeding: exploitation of microsatellite variability for the analysis of a monotonous genome. In: Jain SM, Brar DS, Ahloowalia BS(eds) Molecular techniques in crop improvement. Kluwer, DordrechtGoogle Scholar
  62. Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2 backcross, double haploid, and recombinant inbred populations in rice (Oryza sativa L). Mol Gen Genet 253:535–545PubMedCrossRefGoogle Scholar
  63. Young ND (2000) The genetic architecture of resistance. Curr Opin Plant Biol 3:285–290PubMedCrossRefGoogle Scholar
  64. Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution. Theor Appl Genet 99:785–790CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. Winter
    • 1
  • S. Rakshit
    • 2
  • M. Baum
    • 3
  • G. Kahl
    • 1
  1. 1.Plant Molecular Biology, BiocentreUniversity of Frankfurt/MainFrankfurt/MainGermany
  2. 2.Indian Institute for Pulses ResearchKanpurIndia
  3. 3.International Centre for Agricultural Research in the Dry Areas (ICARDA)AleppoSyria

Personalised recommendations