Advertisement

Genome Analysis of Mesorhizobium loti: A Symbiotic Partner to Lotus japonicus

  • T. Kaneko
  • K. Saeki
  • K. Minamisawa
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 52)

Abstract

By the symbiotic nitrogen fixation process, bacteria of the family Rhizobiaceae convert atmospheric dinitrogen (N2) to ammonia (NH3), which can be effectively utilized by host legume plants. Symbiotic nitrogen fixation contributes significantly to global nitrogen cycles and agricultural practice. The establishment of rhizobia-legume symbiosis requires the induction of new developmental programs in respective partners. The symbiotic interaction begins with signal exchanges of flavonoids and bacterial nodulation signals, Nod factors, between the two partners (Denarie et al 1996). However, the establishment of nitrogen-fixing symbiosis probably requires more complex steps triggered by reciprocal signal exchanges leading to the organogenesis of nodules and differentiation of the microsymbionts (Niner and Hirsch 1998).

Keywords

Symbiotic Nitrogen Fixation Lotus Japonicus Infection Thread Cosmid Library Symbiotic Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Asamizu E, Watanabe M, Tabata S (2000) Large scale structural analysis of cDNAs in the model legume, Lotus japonicus. J Plant Res 113:451–455CrossRefGoogle Scholar
  3. Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kaiman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888PubMedCrossRefGoogle Scholar
  4. Capela D, Barloy-Hubler F, Gatius MT, Gouzy J, Galibert F (1999) A high-density physical map of Sinorhizobium meliloti 1021 chromosome derived from bacterial artificial chromosome library. Proc Natl Acad Sci USA 96:9357–9362PubMedCrossRefGoogle Scholar
  5. Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–9882PubMedCrossRefGoogle Scholar
  6. Denarie J, Debeelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535PubMedCrossRefGoogle Scholar
  7. Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296PubMedCrossRefGoogle Scholar
  8. Gagnon H, Ibrahim RK (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Mol Plant Microbe Interact 11:988–998CrossRefGoogle Scholar
  9. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kaiman S, Keating D, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetene D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672PubMedCrossRefGoogle Scholar
  10. Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H (2001) Potential symbiosis-specific genes uncovered sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412PubMedCrossRefGoogle Scholar
  11. Handberg K, Stougaard J (1992) Lotus japonicus, diploid legume species for classical and molecular genetics. Plant J 2:487–496CrossRefGoogle Scholar
  12. Hattori Y, Omori H, Hanyu M, Kaseda N, Mishima E, Kaneko T,Tabata S, Saeki K(2002) Ordered cosmid library of the Mesorhizobium loti MAFF303099 genome for systematic gene disruption and complementation analysis. Plant Cell Physiol 43:1542–1557PubMedCrossRefGoogle Scholar
  13. Hayashi M, Imaizumi-Anraku H, Akao S, Kawaguchi M (2000) Nodule organogenesis in Lotus japonicus. J Plant Res 113:489–495CrossRefGoogle Scholar
  14. Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380CrossRefGoogle Scholar
  15. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000a) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefGoogle Scholar
  16. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000b) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (Supplement). DNA Res 7:381–406PubMedCrossRefGoogle Scholar
  17. Kohara Y, Akiyama K, Isono K (1987) The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508PubMedCrossRefGoogle Scholar
  18. Kullik I, Fritsche S, Knobel H, Sanjuan J, Hennecke H, Fischer HM (1991) Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). J Bacteriol 173:1125–1138PubMedGoogle Scholar
  19. Lopez-Lara IM, van den Berg JD,Thomas-Oates JE, Glushka J, Lugtenberg BJJ, Spaink HP (1995) Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol Microbiol 15:627–638PubMedCrossRefGoogle Scholar
  20. Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4:336–342PubMedCrossRefGoogle Scholar
  21. Minamisawa K, Mitsui H (2000) Genetic ecology of soybean bradyrhizobia. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 10. Marcel Dekker, New York, pp 349–377Google Scholar
  22. Niner BM, Hirsch AM (1998) How many Rhizobium genes, in addition to nod, nif/fix, and exo, are needed for nodule development and function? Symbiosis 24:51–102Google Scholar
  23. Niwa S, Kawaguchi M, Imaizumi-Anraku H, Chechetka SA, Ishizawa M, Ikuta A, Kouchi H (2001) Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Mol Plant-Microbe Interact 14:848–856PubMedCrossRefGoogle Scholar
  24. Perret X, Broughton WJ, Brenner S (1991) Canonical ordered cosmid library of the symbiotic plasmid of Rhizobium species NGR234. Proc Natl Acad Sci USA 88:1923–1927PubMedCrossRefGoogle Scholar
  25. Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci USA 83:1757–1761PubMedCrossRefGoogle Scholar
  26. Saeki K, Kouchi H (2000) The Lotus symbiont, Mesorhizobium loti: molecular genetic techniques and application. J Plant Res 113:457–465CrossRefGoogle Scholar
  27. Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195PubMedCrossRefGoogle Scholar
  28. Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26:320–322PubMedCrossRefGoogle Scholar
  29. Stiller J, Martirani L,Tuppale S, Chian R, Chiurazzi M, Gresshoff PM(1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48:1357–1365CrossRefGoogle Scholar
  30. Sullivan JT, Ronson CW(1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 95:5145–5149 (with published erratum appears in Proc Natl Acad Sci USA 95:9059)PubMedCrossRefGoogle Scholar
  31. Sullivan JT, Trzebiatowski JR, de Bruijn FJ, Ronson CW (2000) The symbiosis island of a Mesorhi-zobium strain that nodulates Lotus. In:Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 693–704Google Scholar
  32. Sullivan JT, Trzebiaowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, de Bruijn FJ, Ronson CW (2002) Comparative sequences analysis of the symbiosis island of Mesorhìzobium loti strain R7A. J Bacteriol 184:3086–3095PubMedCrossRefGoogle Scholar
  33. Tajima S, Takane K, Nomura M, Kouchi H (2000) Symbiotic nitrogen fixation at the late stage of nodules formation in Lotus japonicus and other legume plants. J Plant Res 113:467–473CrossRefGoogle Scholar
  34. van Berkum P, Eardy BD (1998) Molecular evolutionary systematics of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer, Dordrecht, pp 155–172Google Scholar
  35. Young JPY (1996) Phylogeny and taxonomy of rhizobia. Plant Sci 186:45–52Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • T. Kaneko
    • 1
  • K. Saeki
    • 2
  • K. Minamisawa
    • 3
  1. 1.Kazusa DNA Research InstituteKisarazu, ChibaJapan
  2. 2.Department of Biology, Graduate School of ScienceOsaka UniversityToyonaka, OsakaJapan
  3. 3.Graduate School of Life SciencesTohoku UniversityKatahira, Aoba-ku, SendaiJapan

Personalised recommendations