Construction of High-Density Map, Genome Library, and Saturation Mapping of Nodulation Genes

  • S. Kawasaki
  • Y. Murakami
  • H. Imaizumi-Anraku
  • A. Shimizu
  • I. Mikami
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 52)


Legumes have a unique characteristic in that they fix atmospheric nitrogen by symbiosis with Rhizobium, vital in maintaining sustainable world agriculture. Legumes are also important crops in their own right, with a high content of seed proteins with a good balance of amino acids among them (Sarwar et al. 1978). Lotus japonicus as a model legume is attracting the attention of researchers because of its high transformation susceptibility (Thykajaer et al. 1995), and a relatively small genome size (475 MB, Kawasaki and Murakami 2000; Murakami and Kawasaki, submitted). From the standard accession Gifu (G129) several mutant libraries have been constructed for use in functional genomics (Szczyglowski et al. 1998; Kawaguchi et al. 2002). The most interesting topic in its regard is no doubt the genetic dissection of the nodulation process, including that of the related mycorrhizal development. If essential components of the process can be clarified, transferring the ability of the nitrogen fixation to other important crops, including the graminaceous family, would be a great blessing for world agriculture and for environment protection. However, the current status of infrastructures for genomics in Lotus japonicus is still far behind those of Arabidopsis and rice, whose genomes have been sequenced completely (The Arabidopsis Genome Initiative 2000; Goff et al. 2002; Yu et al. 2002).


Genome Library Mutant Library Lotus Japonicus Average Insert Size Rice Blast Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter. Plant Mol Biol 9:208–218CrossRefGoogle Scholar
  2. Davis BJ (1964) Disc electrophoresis. 2. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427PubMedCrossRefGoogle Scholar
  3. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  4. Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai T (1991) A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci USA 88:9523–9527PubMedCrossRefGoogle Scholar
  5. Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Taketa M, Hayashi M, Pedrosa A, Onda R, Imaizumi-Anraku H, Bachmair A, Sandal N, Stougaard J, Murooka Y, Tabata S, Kawasaki S, Kawaguchi M, Harada K (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310PubMedCrossRefGoogle Scholar
  6. Kawaguchi M, Motomura T, Imaizumi-Anraku H, Akao S, Kawasaki S (2001) Providing the basis for genomics in Lotus japonicus: the accessions Miyakojima and Gifu are appropriate crossing partners for genetic analyses. Mol Genet Genomics 266:157–166PubMedCrossRefGoogle Scholar
  7. Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, Akao S (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15:17–26PubMedCrossRefGoogle Scholar
  8. Kawasaki S, Murakami Y (2000) Genome analysis of Lotus japonicus. J Plant Res 113:497–506CrossRefGoogle Scholar
  9. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807PubMedCrossRefGoogle Scholar
  10. Men AE, Meksem K, Kassem MA, Lohar D, Stiller J, Lightfoot D, Gresshoff PM (2001) A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tume-faciens-transformable vector. Mol Plant Microbe Interact 14:422–425PubMedCrossRefGoogle Scholar
  11. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  12. Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, Kawasaki S (1997) Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representative rice BAC library. Mol Gen Genet 254:611–620PubMedCrossRefGoogle Scholar
  13. Nishhimura M, Nakamura S, Hayashi N, Asakawa S, Shimizu N, Kaku H, Hasebe A, Kawasaki S (1998) Construction of a BAC library of the rice blast fungus Magnaporthe grisea and finding specific genome regions in which its transposons tend to cluster. Biosci Biotechnol Biochem 62:1515–1521CrossRefGoogle Scholar
  14. Sarwar G, Sosulski FW, Bell JM, Bowland JP (1978) Nutritional evaluation of oilseeds and legumes as protein supplements to cereals. Adv Exp Med Biol 105:415–441PubMedCrossRefGoogle Scholar
  15. Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S (2001) Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 mb regions of the genome. DNA Res 31 8:311–318CrossRefGoogle Scholar
  16. Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, Pajuelo E, Nielsen A, Stougaard J (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 259:414–423PubMedCrossRefGoogle Scholar
  17. Senoo K, Solaiman MZ, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment. Plant Cell Physiol 41:726–732PubMedCrossRefGoogle Scholar
  18. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86:232–236PubMedCrossRefGoogle Scholar
  19. Suzuki Y, Orita M, Shiraishi M, Hayashi K, Sekiya T (1990) Detection of ras gene mutations in human lung cancers by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene 5:1037–1043PubMedGoogle Scholar
  20. Stougaard J (2001) Genetics and genomics of root symbiosis. Curr Opin Plant Biol 4(4):328–335PubMedCrossRefGoogle Scholar
  21. Szczyglowski K, Hamburger D, Kapranov P, de Bruijn FJ (1997) Construction of a Lotus japonicus late nodulin expressed sequence tag library and identification of novel nodule-specific genes. Plant Physiol 114:1335–1346PubMedCrossRefGoogle Scholar
  22. Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, Dazzo FB, de Bruijn FJ (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 11:684–697CrossRefGoogle Scholar
  23. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  24. Thykjaer T, Stiller J, Handberg K, Jones J, Stougaard J (1995) The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Mol Biol 27:981–993PubMedCrossRefGoogle Scholar
  25. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  26. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. Kawasaki
    • 1
  • Y. Murakami
    • 1
  • H. Imaizumi-Anraku
    • 1
  • A. Shimizu
    • 1
  • I. Mikami
    • 1
  1. 1.Plant Physiology DepartmentNational Institute of Agrobiological SciencesTsukuba, IbarakiJapan

Personalised recommendations