Skip to main content

Introduction of an Early Flowering Accession “Miyakojima” MG-20 to Molecular Genetics in Lotus japonicus

  • Chapter
Brassicas and Legumes From Genome Structure to Breeding

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 52))

  • 293 Accesses

Abstract

Leguminosae is the third largest family of the angiosperms. The family includes the remarkable biodiversity ranging over the levels of the morphology, secondary metabolites, seed proteins, and biological interactions with insects and others. The family also includes many important plants closely related to human life. However, genes responsible for the causing generation of leguminous biodiversity and usefulness have not been elucidated at the molecular level. In order to identify and characterize such genes—for example, genes controlling symbiotic nitrogen fixation with rhizobia—certain model legumes that enable progress in molecular genetics are definitely required. In general, transformation of leguminous plants is more difficult than experimentally common plants such as Arabidopsis and tobacco. Two herbaceous plants of Lotus japonicus and Medicago truncatula have emerged from the beginning of 1990s as transformable diploid legumes (Barker et al. 1990; Handberg and Stougaard 1992). L. japonicus is known as a determinate-type nodulation plant like soybean and develops slender legumes. On the other hand, M. truncatula is known as an indeterminate-type nodulation plant such as pea and vetch and forms spiral legumes. L. japonicus has six chromosomes (Kawakami 1930) and a small genome size (442Mb per haploid of a widely used accession “Gifu” B-129) (Ito et al. 2000). The generation time is 3–4 months and up to 6,000 seeds can be obtained from one plant (Handberg and Stougaard 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2000) Nucleotide generation of 7137 non-redundant expressed sequence tags from a legume, Lotus japonicus. DNA Res 7:127–130

    Article  PubMed  Google Scholar 

  • Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Genier G, Guy P, Muel X, Tourneur J, Dénarié, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Google Scholar 

  • Cheong YH, Yoo CM, Park JM, Ryu GR, Goekjian VH, Nagao RT, Key JL, Cho MJ, Hong JC (1998) STF1 is a novel TGACG-binding factor with a zinc-finger motif and a bZIP domain which heterodimerizes with GBF proteins. Plant J 15:199–209

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski D (2001) Japanese legume project may help to fix the nitrogen problem. Nature 409:272

    Article  PubMed  CAS  Google Scholar 

  • Grant WF, Small E. (1996) The origin of the Lotus corniculatus (Fabaceae) complex: a synthesis of diverse evidence. Can J Bot 74:975–989

    Article  Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonicus, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  • Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW (2000) HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COPI binding domain. EMBO J 19:4997–5006

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Taketa M, Hayashi M, Pedrosa A, Onda R, Imaizumi-Anraku H, Bachmair A, Sandal N, Stougaard J, Murooka Y, Tabata S, Kawasaki S, Kawaguchi M, Harada K (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi-Anraku H, Kawaguchi M, Koiwa H, Akao S, Syono K (1997) Two ineffective-nodulating mutants of Lotus japonicus: different phenotypes caused by the blockage of endocytotic bacterial release and nodule maturation. Plant Cell Physiol 38:871–881

    Article  CAS  Google Scholar 

  • Imaizumi-Anraku H, Kouchi H, Syono K, Akao S, Kawaguchi M (2000) Analysis of ENOD40 expression in alb1, a symbiotic mutant of Lotus japonicus that forms empty nodules with incompletely developed nodule vascular bundles. Mol Gen Genet 264:402–410

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Miyamoto J, Mori Y, Fujimoto S, Uchiumi T, Abe M, Suzuki A, Tabata S, Fukui K (2000) Genome and chromosome dimensions of Lotus japonicus. J Plant Res 113:435–442

    Article  Google Scholar 

  • Jiang Q, Gresshoff PM (1997) Classical and molecular genetics of the model legume Lotus japonicus. Mol Plant Microbe Interact 10:59–68

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi M (2000) Lotus japonicus ‘Miyakojima’ MG-20: an early-flowering accession suitable for indoor handling. J Plant Res 113:507–509

    Article  Google Scholar 

  • Kawaguchi M, Motomura T, Imaizumi-Anraku H, Akao S, Kawasaki S (2001) Providing the basis of genome research in Lotus japonicus. Mol Genet Genomics 266:157–166

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, Akao S (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15:17–26

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, J (1930) Bot Mag 44:319

    Google Scholar 

  • Kawasaki S, Murakami Y (2000) Genome analysis of Lotus japonicus. J Plant Res 113:497–506

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1998) A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Google Scholar 

  • Nishimura R, Ohmori M, Kawaguchi M (2002a) The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicusastray mutant is an early nodulating mutant with wider nodulation zone. Plant Cell Physiol 43:853–859

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R, Ohmori M, Fujita H, Kawaguchi M (2002b) A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proc Natl Acad Sci USA 99:15206–15210

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R, Hayashi M, Wu G-J, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002c) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Article  CAS  Google Scholar 

  • Niwa S, Kawaguchi M, Imaizumi-Anraku H, Chechetka SA, Ishizuka M, Ikuta, A, Kouchi H (2001) Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Mol Plant Microbe Interact 14:848–856

    Article  PubMed  CAS  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995

    Article  PubMed  CAS  Google Scholar 

  • Sandal N, Krusell L, Radutoiu S, Olbryt M, Pedrosa A, Stracke S, Sato S, Kato T, Tabata S, Parniske M, Bachmair A, Ketelsen T, Stougaard J (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161:1673–1683

    PubMed  CAS  Google Scholar 

  • Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S (2001) Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 mb regions of the genome. DNA Res 8:311–318

    Article  PubMed  CAS  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195

    Article  PubMed  CAS  Google Scholar 

  • Solaiman MZ, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Characterization of mycorrhizas formed by Glomus sp. on roots of hypernodulating mutants of Lotus japonicus. J Plant Res 113:443–448

    Article  Google Scholar 

  • Stougaard J (2001) Genetics and genomics of root symbiosis. Curr Opin Plant Biol 4:328–335

    Article  PubMed  CAS  Google Scholar 

  • Stougaard J, Beuselink PR (1996) Registration of GIFU B-129-S9 Lotus japonicus germplasm. Crop Sci 36:476

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawaguchi, M., Nishimura, R. (2003). Introduction of an Early Flowering Accession “Miyakojima” MG-20 to Molecular Genetics in Lotus japonicus . In: Nagata, T., Tabata, S. (eds) Brassicas and Legumes From Genome Structure to Breeding. Biotechnology in Agriculture and Forestry, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05036-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05036-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07662-6

  • Online ISBN: 978-3-662-05036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics