Skip to main content

Insertion Device Radiation

  • Chapter
Particle Accelerator Physics

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 1042 Accesses

Abstract

Synchrotron radiation from bending magnets is characterized by a wide spectrum from microwaves up to soft or hard x-rays as determined by the critical photon energy. To optimally meet the needs of basic research with synchrotron radiation, it is desirable to provide specific radiation characteristics that cannot be obtained from ring bending magnet but require special magnets. The field strength of bending magnets and the maximum particle beam energy in circular accelerators like a storage ring is fixed leaving no adjustments to optimize the synchrotron radiation spectrum for particular experiments. To generate specific synchrotron radiation characteristics, radiation is often produced from special insertion devices installed along the particle beam path. Such insertion devices introduce no net deflection of the beam and can therefore be incorporated in a beam line without changing its geometry. Motz [11.1] proposed first the use of undulators or wiggler magnets to optimize characteristics of synchrotron radiation. By now such magnets have become the most common insertion devices consisting of a series of alternating magnet poles and deflecting the beam periodically in opposite directions as shown in Fig. 11.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Motz: J. Appl. Phys. 22, 527 (1951)

    Article  ADS  MATH  Google Scholar 

  2. H. Wiedemann: Particle Accelerator Physics I (Springer, Berlin, Heidelberg 1993 )

    Google Scholar 

  3. B.M. Kincaid: J. Appl. Phys. 48, 2684 (1977)

    Article  ADS  Google Scholar 

  4. D.F. Alferov, Y.A. Bashmakov, E.G. Bessonov: Sov. Phys. - Tech. Phys. 18, 1336 (1974)

    Google Scholar 

  5. S. Krinsky: Nucl. Instrum. Methods 172, 73 (1979) or IEEE Trans. NS-30, 3078 (1983)

    Google Scholar 

  6. W.M. Lavender: Observation and analysis of x-ray undulator radiation from PEP. Ph.D. thesis, Stanford University (1988)

    Google Scholar 

  7. A. Bienenstock, G. Brown, H. Wiedemann, H. Winick: Rev. Sci. Instrum. 60, 1393 (1989)

    Article  ADS  Google Scholar 

  8. P. Elleaume: Nucl. Instrum. Methods A 291, 371 (1990)

    Article  ADS  Google Scholar 

  9. B. Diviacco, R.P. Walker: Nucl. Instrum. Methods A 292, 517 (1990)

    Article  ADS  Google Scholar 

  10. S. Sasaki, K. Kakuno, T. Takada, T. Shimada, K. Yanagida, Y. Miyahara• Nucl. Instrum. Methods A 331, 763 (1993)

    Google Scholar 

  11. R. Carr, S. Lidia: The adjustable phase planar helical undulator. SPIE Proc. 2013 (SPIE, Bellingham, WA 1993 )

    Google Scholar 

  12. R. Carr: Nucl. Instrum. Meth. A 306, 391 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiedemann, H. (2003). Insertion Device Radiation. In: Particle Accelerator Physics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05034-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05034-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00672-5

  • Online ISBN: 978-3-662-05034-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics