Hamiltonian Nonlinear Beam Dynamics

  • Helmut Wiedemann
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

Deviations from linear beam dynamics in the form of perturbations and aberrations play an important role in accelerator physics. Beam parameters, quality and stability are determined by our ability to correct and control such perturbations. Hamiltonian formulation of nonlinear beam dynamics allows us to study, understand and quantify the effects of geometric and chromatic aberrations in higher order than discussed so far. Based on this understanding we may develop correction mechanisms to achieve more and more sophisticated beam performance. We will first discuss higher-order beam dynamics as an extension to the linear matrix formulation followed by specific discussions on aberrations. Finally, we develop the Hamiltonian perturbation theory for particle beam dynamics in accelerator systems.

Keywords

Expense Peri Sine Rium Astigmatism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    H. Wiedemann: Particle Accelerator Physics I (Springer, Berlin, Heidelberg 1993 )Google Scholar
  2. 5.2
    K.L. Brown, R. Belbeoch, P. Bounin: Rev. Sci. Instrum. 35, 481 (1964)ADSCrossRefGoogle Scholar
  3. 5.3
    K.L. Brown: Proc. 5th Int’l Conf. on High Energy Accelerators, Frascati, Italy (1965) p. 507Google Scholar
  4. 5.4
    K.L. Brown: Adv. Particle Phys. 1, 71 (1967)Google Scholar
  5. 5.5
    K.L. Brown, D.C. Carey, Ch. Iselin, F. Rothacker: TRANSPORT–a computer program for designing charged particle beam transport systems, SLAC-75 (1972), CERN 73–16 (1973), and revisions in SLAC-91 (1977), CERN 80–4 (1980)Google Scholar
  6. 5.6
    S. Kheifets, T. Fieguth, K.L. Brown, A.W. Chao, J.J. Murray, R.V. Servranckx, H. Wiedemann: 13th Int’l Conf. on High Energy Accelerators, Novosibirsk, USSR (1986)Google Scholar
  7. 5.7
    PEP Conceptual Design Report. Stanford Linear Accelerator Center, Stanford Rept. SLAC-189 and LBL-4288 (1976)Google Scholar
  8. 5.8
    H. Wiedemann: Chromaticity correction in large storage rings. SLAC Int. Note PEP-220 (1976)Google Scholar
  9. 5.9
    K.L. Brown, R.V. Servranckx: Proc. 11th Int’l Conf. on High Energy Accelerators ( Birkhäuser, Basel 1980 ) p. 656Google Scholar
  10. 5.10
    J.J. Murray, K.L. Brown, T. Fieguth: 1987 IEEE Particle Accelerator Conf., Washington, DC. IEEE Catalog No. 87CH2387–9, 1331 (1987)Google Scholar
  11. 5.11
    L. Emery: A wiggler-based ultra-low-emittance damping ring lattice and its chromatic correction. Ph.D. Thesis, Stanford University (1990)Google Scholar
  12. 5.12
    R.V. Servranckx, K.L. Brown: IEEE Trans. NS-26, 3598 (1979)Google Scholar
  13. 5.13
    B. Autin: Nonlinear betatron oscillations. AIP Conf. Proc. 153, 288 ( American Institute of Physics, New York 1987 )Google Scholar
  14. 5.14
    B. Autin: The CERN anti proton collector. CERN 84–15, 525 (1984)Google Scholar
  15. 5.15
    M.H.R. Donald: Chromaticity correction in circular accelerators and storage rings, Pt.I, a users guide to the HARMON program. SLAC Note PEP-311 (1979)Google Scholar
  16. 5.16
    K.L. Brown, D.C. Carey, Ch. Iselin: DECAY TURTLE - a computer program for simulating charged particle beam transport systems, including decay calculations. CERN-74–2 (1974)Google Scholar
  17. 5.17
    D.R. Douglas, A. Dragt: IEEE Trans. NS-28, 2522 (1981)Google Scholar
  18. 5.18
    A. Wrulich: Proc. Workshop on accelerator orbit and particle tracking programs. Brookhaven National Laboratory, Rept. BNL-31761, 26 (1982)Google Scholar
  19. 5.19
    PATPET is a combination of the programs PATRICIA and PETROS. The program PETROS allows to study the effect of errors and has been developed by Kewish and Steffen [5.20]. The combination of both programs was performed by Emery, Safranek and H. Wiedemann: Int. Note SSRL ACD-36, Stanford (1988)Google Scholar
  20. 5.20
    J. Kewisch, K.G. Steffen: Int. Rept. DESY PET 76/09 (1976)Google Scholar
  21. 5.21
    F.T. Cole: Nonlinear transformations in action-angle variables. Int. Note, Fermilab TM-179, 2040 (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Helmut Wiedemann
    • 1
  1. 1.Applied Physics Department and Synchrotron Radiation LaboratoryStanford UniversityStanfordUSA

Personalised recommendations