Skip to main content

Structure of Quasicrystals via Pair Potentials

  • Chapter
Quasicrystals

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 55))

  • 720 Accesses

Summary

Quasicrystal structures are commonly described as a cut through a density distribution in higher-dimensional space. When adopted in a diffraction approach to the structure solution, such a scheme in general only provides information about an averaged density distribution in real space, and fails to account for correlations in the occupancy of some partially occupied sites. An alternative and complementary approach described here combines a tiling-decoration description of the structure, and cohesive energies calculated using realistic pair potentials, in order to propose plausible atomic configurations, compatible with the diffraction data. The approach is illustrated on the example of a large cubic approximant to the icosahedral AlZnMg quasicrystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak P. (1985): Phys. Rev. Lett. 54, 1517,

    Article  ADS  Google Scholar 

  2. Bak P. (1986): Phys. Rev. B 32, 5764

    Article  MathSciNet  ADS  Google Scholar 

  3. Bergman G., Waugh J. L. T., Pauling L. (1957): Acta Cryst. 10, 254

    Article  Google Scholar 

  4. Denton A., Hafner J. (1997): Phys. Rev. B 56, 2469

    Article  ADS  Google Scholar 

  5. Dell’Acqua G., Krajčí M., Hafner J. (1997): J. Phys. Cond. Matt. 9, 10 725

    Google Scholar 

  6. Dzugutov M. (1993): Phys. Rev. Lett. 70, 2924

    Article  ADS  Google Scholar 

  7. Elser V. (1985): Phys. Rev. B 32, 4892

    Article  ADS  Google Scholar 

  8. Friedel J. (1988): Helv. Phys. Acta 61, 538

    Google Scholar 

  9. Hafner J., Krajčí M. (1993): J. Phys. Cond. Matt. 5, 2489

    Article  ADS  Google Scholar 

  10. Hafner J., Heine V. (1983, 1986): J. Phys. F 13, 2479;

    Article  ADS  Google Scholar 

  11. Hafner J., Heine V. (1983, 1986): J. Phys. F 16, 1429

    Article  ADS  Google Scholar 

  12. Henley C. L. (1991): Phys. Rev. B 43, 993

    Article  ADS  Google Scholar 

  13. Henley C. L., Elser V. (1986): Phil. Mag. B 53, L59

    Article  Google Scholar 

  14. Krajčí M., Hafner J. (1992): Phys. Rev. B 46, 10 669

    Google Scholar 

  15. Mihalkovič M., Mrafko P. (1993): Europhys. Lett. 21, 463

    Article  ADS  Google Scholar 

  16. Mihalkovič M., Mrafko P. (1994): Phys. Rev. B 49, 100;

    Article  ADS  Google Scholar 

  17. Mihalkovič M., Mrafko P. (1992): J. Non-Cryst. Sol. 143, 225

    Article  ADS  Google Scholar 

  18. Mihalkovič M., Zhu W.-J., Henley C.L., Oxborrow M. (1996): Phys. Rev. B 53, 9002

    Article  ADS  Google Scholar 

  19. Mihalkovič M., Zhu W.-J., Henley C.L., Phillips R. (1996): Phys. Rev. B 53, 9021

    Article  ADS  Google Scholar 

  20. Mizutani U., Matsuda T., Itoh Y., Tanaka K., Domae H., Mizuno T., Murasaki S., Miyoshi Y., Hashimoto K., Yamada Y. (1993): J. Non-Cryst. Sol. 156–158, 882

    Article  ADS  Google Scholar 

  21. Moriarty J.A., Widom M. (1997): Phys. Rev. B 56, 7905

    Article  ADS  Google Scholar 

  22. Oxborrow M. (1993): Ph. D. Thesis, Cornell University, Ithaca

    Google Scholar 

  23. Roth J., Trebin H.-R., Schilling R. (1995): Phys. Rev. B 51, 15 833

    Google Scholar 

  24. Roth J., Henley C. L. (1997): Phil. Mag. A 75, 861

    Article  ADS  Google Scholar 

  25. Smith A. P. (1991): Phys. Rev. B 43, 11 635

    Google Scholar 

  26. Spiekerman S., PhD Thesis, Fachbereich Chemie, Universität Dortmund (1998)

    Google Scholar 

  27. Takeuchi T., Mizutani U. (1995): Phys. Rev. B 52, 9300

    Article  ADS  Google Scholar 

  28. Vaks V.G., Kamyshenko V.V., Samolyuk G.D. (1988): Phys. Lett. 132 A, 131

    ADS  Google Scholar 

  29. Widom M., Phillips R., Zou J., Carlsson A.E. (1995): Phil. Mag. B 71, 397

    Article  Google Scholar 

  30. Widom M., Cockayne E.: Proc. Fifth Int. Conf. Quasicrystals, ed. C. Janot, R. Mosseri (Singapore, World Scientific 1994), p. 343

    Google Scholar 

  31. Windisch M., Hafner J., Krajčí M., Mihalkovič M. (1994): Phys. Rev. B 49, 8701

    Article  ADS  Google Scholar 

  32. Yamamoto A. (1993): Acta Cryst. A 49, 337

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mihalkovič, M. (2002). Structure of Quasicrystals via Pair Potentials. In: Suck, JB., Schreiber, M., Häussler, P. (eds) Quasicrystals. Springer Series in Materials Science, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05028-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05028-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08390-7

  • Online ISBN: 978-3-662-05028-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics